22,573 research outputs found

    Racial Representation and Miss Saigon: A Zero Sum Game?

    Get PDF
    People have been protesting and supporting the musical Miss Saigon since its premiere in 1989. The musical tale of a white American GI falling in love with a Vietnamese bargirl during the Vietnam War is praised for its diverse cast and showing the Vietnamese side of the war. Miss Saigon is also criticized for its stereotypical depiction of Asian women as prostitutes and Asian men as cold and treacherous. Both sides are passionate, and there is no clear consensus or majority opinion. What, then, is the value of Miss Saigon? Should it be banned or still performed? I analyze the different positions of the protesters, and compare their opinions to Miss Saigon supporters. The debate reaches beyond Miss Saigon to comment on what quality representation in media means and whether quality representation for one group is outweighed by controversial representation of another. Ultimately, I decide that the show is still worth performing if the actors and production team are willing to contend with the issues of race and representation raised by the protesters

    Spiralling dynamics near heteroclinic networks

    Full text link
    There are few explicit examples in the literature of vector fields exhibiting complex dynamics that may be proved analytically. We construct explicitly a {two parameter family of vector fields} on the three-dimensional sphere \EU^3, whose flow has a spiralling attractor containing the following: two hyperbolic equilibria, heteroclinic trajectories connecting them {transversely} and a non-trivial hyperbolic, invariant and transitive set. The spiralling set unfolds a heteroclinic network between two symmetric saddle-foci and contains a sequence of topological horseshoes semiconjugate to full shifts over an alphabet with more and more symbols, {coexisting with Newhouse phenonema}. The vector field is the restriction to \EU^3 of a polynomial vector field in \RR^4. In this article, we also identify global bifurcations that induce chaotic dynamics of different types.Comment: change in one figur

    Phenotypic mixing and hiding may contribute to memory in viral quasispecies

    Get PDF
    Background. In a number of recent experiments with food-and-mouth disease virus, a deleterious mutant, was found to avoid extinction and remain in the population for long periods of time. This observation was called quasispecies memory. The origin of quasispecies memory is not fully understood. Results. We propose and analyze a simple model of complementation between the wild type virus and a mutant that has an impaired ability of cell entry. The mutant will go extinct unless it is recreated from the wild type through mutations. However, under phenotypic mixing-and-hiding as a mechanism of complementation, the time to extinction in the absence of mutations increases with increasing multiplicity of infection (m.o.i.). The mutant's frequency at equilibrium under selection-mutation balance also increases with increasing m.o.i. At high m.o.i., a large fraction of mutant genomes are encapsidated with wild-type protein, which enables them to infect cells as efficiently as the wild type virions, and thus increases their fitness to the wild-type level. Moreover, even at low m.o.i. the equilibrium frequency of the mutant is higher than predicted by the standard quasispecies model, because a fraction of mutant virions generated from wild-type parents will also be encapsidated by wild-type protein. Conclusions. Our model predicts that phenotypic hiding will strongly influence the population dynamics of viruses, particularly at high m.o.i., and will also have important effects on the mutation--selection balance at low m.o.i. The delay in mutant extinction and increase in mutant frequencies at equilibrium may, at least in part, explain memory in quasispecies populations.Comment: 10 pages pdf, as published by BM

    Dense heteroclinic tangencies near a Bykov cycle

    Get PDF
    This article presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a Bykov cycle where trajectories turn in opposite directions near the two nodes --- we say that the nodes have different chirality. We show that in the set of vector fields defined on a three-dimensional manifold, there is a class where tangencies of the invariant manifolds of two hyperbolic saddle-foci occur densely. The class is defined by the presence of the Bykov cycle, and by a condition on the parameters that determine the linear part of the vector field at the equilibria. This has important consequences: the global dynamics is persistently dominated by heteroclinic tangencies and by Newhouse phenomena, coexisting with hyperbolic dynamics arising from transversality. The coexistence gives rise to linked suspensions of Cantor sets, with hyperbolic and non-hyperbolic dynamics, in contrast with the case where the nodes have the same chirality. We illustrate our theory with an explicit example where tangencies arise in the unfolding of a symmetric vector field on the three-dimensional sphere

    Global bifurcations close to symmetry

    Get PDF
    Heteroclinic cycles involving two saddle-foci, where the saddle-foci share both invariant manifolds, occur persistently in some symmetric differential equations on the 3-dimensional sphere. We analyse the dynamics around this type of cycle in the case when trajectories near the two equilibria turn in the same direction around a 1-dimensional connection - the saddle-foci have the same chirality. When part of the symmetry is broken, the 2-dimensional invariant manifolds intersect transversely creating a heteroclinic network of Bykov cycles. We show that the proximity of symmetry creates heteroclinic tangencies that coexist with hyperbolic dynamics. There are n-pulse heteroclinic tangencies - trajectories that follow the original cycle n times around before they arrive at the other node. Each n-pulse heteroclinic tangency is accumulated by a sequence of (n+1)-pulse ones. This coexists with the suspension of horseshoes defined on an infinite set of disjoint strips, where the first return map is hyperbolic. We also show how, as the system approaches full symmetry, the suspended horseshoes are destroyed, creating regions with infinitely many attracting periodic solutions

    On Takens' Last Problem: tangencies and time averages near heteroclinic networks

    Get PDF
    We obtain a structurally stable family of smooth ordinary differential equations exhibiting heteroclinic tangencies for a dense subset of parameters. We use this to find vector fields C2C^2-close to an element of the family exhibiting a tangency, for which the set of solutions with historic behaviour contains an open set. This provides an affirmative answer to Taken's Last Problem (F. Takens (2008) Nonlinearity, 21(3) T33--T36). A limited solution with historic behaviour is one for which the time averages do not converge as time goes to infinity. Takens' problem asks for dynamical systems where historic behaviour occurs persistently for initial conditions in a set with positive Lebesgue measure. The family appears in the unfolding of a degenerate differential equation whose flow has an asymptotically stable heteroclinic cycle involving two-dimensional connections of non-trivial periodic solutions. We show that the degenerate problem also has historic behaviour, since for an open set of initial conditions starting near the cycle, the time averages approach the boundary of a polygon whose vertices depend on the centres of gravity of the periodic solutions and their Floquet multipliers. We illustrate our results with an explicit example where historic behaviour arises C2C^2-close of a SO(2)\textbf{SO(2)}-equivariant vector field
    corecore