1,318 research outputs found

    On Heat-Treatable Copper-Chromium Alloy, 1

    Get PDF
    A mother alloy of 10% Cr and 90% Cu was prepared by sintering. This was alloyed with the Cu melt and Cu-Cr alloys containing about 0.5% Cr was obtained. These alloys could be deformed easily in both the hot and cold states. By measuring the hardness change, age-hardening properties of cast alloys were studied, which were quenched from 950 deg and aged at 300 to 700 deg for 1 hour. The maximum hardness was obtained with the tempering temperature of 500 deg. For the temperature of solution-treatment, 950 deg was insufficient and that above 1000 deg necessary. For the tempering time, a treatment at 500 deg for 1 hr. or at 450 deg for 3 hrs. yielded the maximum hardness. As for the properties for electrical conductors, 3 kinds of wires (diam. 2 mm.) were made: (1) after cold-drawn to 2 mm., solution-treated, quenched, and then tempered (500 deg, 1 hr.); (2) after quenching, cold-drawn (75% reduction) to 2 mm. and tempered (500 deg, 1 hr.); and (3) after quenching, cold-drawn (81%) to intermediate diameter, tempered (500 deg, 1 hr.) and then cold-drawn (88%) again. Properties obtained for the 3 kinds, respectively, were as follows: conductivity 91, 90, and 86%. Tensile strength and strength for electrical conductivity are given

    Superconductivity and Rattling under High Pressure in the beta-Pyrochlore Oxide RbOs2O6

    Full text link
    Rattling-induced superconductivity in the beta-pyrochlore oxide RbOs2O6 is investigated under high pressures up to 6 GPa. Resistivity measurements in a high-quality single crystal show that the superconducting transition temperature Tc increases gradually from 6.3 K at ambient pressure to 8.8 K at 3.5 GPa, surprisingly remains almost constant at 8.8 \pm 0.1 K in a wide pressure range between 3.5 (Po) and 4.8 GPa, and suddenly drops to 6.3 K at Ps = 4.9 GPa, followed by a gradual decrease with further pressure increase. Two anomalies in the temperature dependence of the normal-state resistivity are observed at Po Ps, revealing the presence of two high-pressure phases corresponding to the changes in Tc. The rattling of the Rb ion inside a cage made of Os and O atoms may be slightly and seriously modified in these high-pressure phases that probably have cages of reduced symmetry, respectively, so that electron-rattler interactions that govern the superconducting and transport properties of beta-RbOs2O6 are significantly affected.Comment: arXiv admin note: text overlap with arXiv:1009.035

    Simulation of premixed combustion with varying equivalence ratio in gas turbine combustor

    Get PDF
    RANS simulation of a gas turbine combustor with complex geometry is performed. The turbulence is modelled using a two-equation approach. The scalar mixing and combustion is modelled using a flamelet based approach for partially premixed combustion. In this approach transport equations to described scalar mixing and reacting fields and their statistical interactions are solved along with standard conservation equations. The boundary conditions are specified using measured values. The computed spatial variations of averaged temperature and dry mole fractions of various scalars, including CO and NOx, compared quite well with measured values. The results of this combustion model are compared to the eddy-dissipation-concept (EDC) model commonly used for gas turbine combustion calculation and this comparison showed that the results of partially premixed combustion model is improved considerably.This is the author accepted manuscript. The final version is available from the American Institute of Aeronautics and Astronautics via http://dx.doi.org/10.2514/1.B3551

    Holographic Wilsonian flows and emergent fermions in extremal charged black holes

    Full text link
    We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a `generalized' basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS_2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS_2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in arXiv:1001.5049 [hep-th]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become `light' in the AdS_2 region near the Fermi surface and emerge as new dynamical degrees of freedom.Comment: 37 pages (including 8 pages of appendix), 10 figures and 2 table

    Epidemiological associations between brachycephaly and upper respiratory tract disorders in dogs attending veterinary practices in England

    Get PDF
    Background: Brachycephalic dog breeds are increasingly common. Canine brachycephaly has been associated with upper respiratory tract (URT) disorders but reliable prevalence data remain lacking. Using primary-care veterinary clinical data, this study aimed to report the prevalence and breed-type risk factors for URT disorders in dogs. Results: The sampling frame included 170,812 dogs attending 96 primary-care veterinary clinics participating within the VetCompass Programme. Two hundred dogs were randomly selected from each of three extreme brachycephalic breed types (Bulldog, French Bulldog and Pug) and three common small-to medium sized breed types (moderate brachycephalic: Yorkshire Terrier and non-brachycephalic: Border Terrier and West Highland White Terrier). Information on all URT disorders recorded was extracted from individual patient records. Disorder prevalence was compared between groups using the chi-squared test or Fisher’s test, as appropriate. Risk factor analysis used multivariable logistic regression modelling. During the study, 83 (6.9 %) study dogs died. Extreme brachycephalic dogs (median longevity: 8.6 years, IQR: 2.4-10.8) were significantly younger at death than the moderate and non-brachycephalic group of dogs (median 12.7 years, IQR 11.1-15.0) (P \u3c 0.001). A higher proportion of deaths in extreme brachycephalic breed types were associated with URT disorders (4/24 deaths, 16.7 %) compared with the moderate and non-brachycephalic group (0/59 deaths, 0.0 %) (P = 0.001). The prevalence of having at least one URT disorder in the extreme brachycephalic group was higher (22.0 %, 95 % confidence interval (CI): 18.0-26.0) than in the moderate and non-brachycephalic group (9.7 %, 95 % CI: 7.1-12.3, P \u3c 0.001). The prevalence of URT disorders varied significantly by breed type: Bulldogs 19.5 %, French Bulldogs 20.0 %, Pugs 26.5 %, Border Terriers 9.0 %, West Highland White Terriers 7.0 % and Yorkshire Terriers 13.0 % (P \u3c 0.001). After accounting for the effects of age, bodyweight, sex, neutering and insurance, extreme brachycephalic dogs had 3.5 times (95 % CI: 2.4-5.0, P \u3c 0.001) the odds of at least one URT disorder compared with the moderate and non-brachycephalic group. Conclusions: In summary, this study reports that URT disorders are commonly diagnosed in Bulldog, French Bulldog, Pug, Border Terrier, WHWT and Yorkshire Terrier dogs attending primary-care veterinary practices in England. The three extreme brachycephalic breed types (Bulldog, French Bulldog and Pug) were relatively short-lived and predisposed to URT disorders compared with three other small-to-medium size breed types that are commonly owned (moderate brachycephalic Yorkshire Terrier and non-brachycephalic: Border Terrier and WHWT). Conclusions: In summary, this study reports that URT disorders are commonly diagnosed in Bulldog, French Bulldog, Pug, Border Terrier, WHWT and Yorkshire Terrier dogs attending primary-care veterinary practices in England. The three extreme brachycephalic breed types (Bulldog, French Bulldog and Pug) were relatively short-lived and predisposed to URT disorders compared with three other small-to-medium size breed types that are commonly owned (moderate brachycephalic Yorkshire Terrier and non-brachycephalic: Border Terrier and WHWT)

    On Holographic description of the Kerr-Newman-AdS-dS black holes

    Full text link
    In this paper, we study the holographic description of the generic four-dimensional non-extremal Kerr-Newman-AdS-dS black holes. We find that if focusing on the near-horizon region, for the massless scalar scattering in the low-frequency limit, there exists hidden conformal symmetry on the solution space. Similar to the Kerr case, this suggests that the Kerr-Newman-AdS-dS black hole is dual to a two-dimensional CFT with central charges cL=cR=6a(r++r)kc_L=c_R=\frac{6a(r_++r_\ast)}{k} and temperatures TL=k(r+2+r2+2a2)4πaΞ(r++r),TR=k(r+r)4πaΞT_L=\frac{k(r_+^2+r_\ast^2+2a^2)}{4\pi a\Xi(r_++r_\ast)}, T_R=\frac{k(r_+-r_\ast)}{4\pi a\Xi}. The macroscopic Bekenstein-Hawking entropy could be recovered from the microscopic counting in dual CFT via the Cardy formula. Using the Minkowski prescription, we compute the real-time correlators of the scalar, photon and graviton in near horizon geometry of near extremal Kerr-AdS-dS black hole. In all these cases, the retarded Green's function and the corresponding absorption cross section are in perfect match with CFT prediction. We further discuss the low-frequency scattering of a charged scalar by a Kerr-Newman-AdS-dS black hole and find the dual CFT description.Comment: 22 pages; minor corrections, conlusion unchanged, references added;published versio

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    New Near Horizon Limit in Kerr/CFT

    Full text link
    The extremal Kerr black hole with the angular momentum J is conjectured to be dual to CFT with central charges c_L=c_R=12J. However, the central charge in the right sector remains to be explicitly derived so far. In order to investigate this issue, we introduce new near horizon limits of (near) extremal Kerr and five-dimensional Myers-Perry black holes. We obtain Virasoro algebras as asymptotic symmetries and calculate the central charges associated with them. One of them is equivalent to that of the previous studies, and the other is non-zero, but still the order of near extremal parameter. Redefining the algebras to take the standard form, we obtain a finite value as expected by the Kerr/CFT correspondence.Comment: 25 pages, minor changes, references adde

    Kerr/CFT, dipole theories and nonrelativistic CFTs

    Get PDF
    We study solutions of type IIB supergravity which are SL(2,R) x SU(2) x U(1)^2 invariant deformations of AdS_3 x S^3 x K3 and take the form of products of self-dual spacelike warped AdS_3 and a deformed three-sphere. One of these backgrounds has been recently argued to be relevant for a derivation of Kerr/CFT from string theory, whereas the remaining ones are holographic duals of two-dimensional dipole theories and their S-duals. We show that each of these backgrounds is holographically dual to a deformation of the DLCQ of the D1-D5 CFT by a specific supersymmetric (1,2) operator, which we write down explicitly in terms of twist operators at the free orbifold point. The deforming operator is argued to be exactly marginal with respect to the zero-dimensional nonrelativistic conformal (or Schroedinger) group - which is simply SL(2,R)_L x U(1)_R. Moreover, in the supergravity limit of large N and strong coupling, no other single-trace operators are turned on. We thus propose that the field theory duals to the backgrounds of interest are nonrelativistic CFTs defined by adding the single Schroedinger-invariant (1,2) operator mentioned above to the original CFT action. Our analysis indicates that the rotating extremal black holes we study are best thought of as finite right-moving temperature (non-supersymmetric) states in the above-defined supersymmetric nonrelativistic CFT and hints towards a more general connection between Kerr/CFT and two-dimensional non-relativistic CFTs.Comment: 48+8 pages, 4 figures; minor corrections and references adde

    Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides

    Get PDF
    Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1gA_{1g}) symmetry (s±s^\pm). In particular we focus on the role of the hole pocket at the (π,π)(\pi,\pi) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {\it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s±s^\pm state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap
    corecore