919 research outputs found
Aspects of mutually unbiased bases in odd prime power dimensions
We rephrase the Wootters-Fields construction [Ann. Phys., {\bf 191}, 363
(1989)] of a full set of mutually unbiased bases in a complex vector space of
dimensions , where is an odd prime, in terms of the character
vectors of the cyclic group of order . This form may be useful in
explicitly writing down mutually unbiased bases for .Comment: 3 pages, latex, no figure
CP^n, or, entanglement illustrated
We show that many topological and geometrical properties of complex
projective space can be understood just by looking at a suitably constructed
picture. The idea is to view CP^n as a set of flat tori parametrized by the
positive octant of a round sphere. We pay particular attention to submanifolds
of constant entanglement in CP^3 and give a few new results concerning them.Comment: 28 pages, 9 figure
Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate
The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9–7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1–3 °C Northern Hemisphere cooling lasting ~ 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40° and 50°N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5–8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering during the Holocene are restricted to the North Atlantic sector. Thus, topographic forcing is unlikely to have played a major role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater
Experimental Demonstration of Optimal Unambiguous State Discrimination
We present the first full demonstration of unambiguous state discrimination
between non-orthogonal quantum states. Using a novel free space interferometer
we have realised the optimum quantum measurement scheme for two non-orthogonal
states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have
for the first time gained access to all three possible outcomes of this
measurement. All aspects of this generalised measurement scheme, including its
superiority over a standard von Neumann measurement, have been demonstrated
within 1.5% of the IDP predictions
Maximal Entanglement, Collective Coordinates and Tracking the King
Maximal entangled states (MES) provide a basis to two d-dimensional particles
Hilbert space, d=prime . The MES forming this basis are product states
in the collective, center of mass and relative, coordinates. These states are
associated (underpinned) with lines of finite geometry whose constituent points
are associated with product states carrying Mutual Unbiased Bases (MUB) labels.
This representation is shown to be convenient for the study of the Mean King
Problem and a variant thereof, termed Tracking the King which proves to be a
novel quantum communication channel. The main topics, notions used are reviewed
in an attempt to have the paper self contained.Comment: 8. arXiv admin note: substantial text overlap with arXiv:1206.3884,
arXiv:1206.035
Unambiguous state discrimination in quantum cryptography with weak coherent states
The use of linearly independent signal states in realistic implementations of
quantum key distribution (QKD) enables an eavesdropper to perform unambiguous
state discrimination. We explore quantitatively the limits for secure QKD
imposed by this fact taking into account that the receiver can monitor to some
extend the photon number statistics of the signals even with todays standard
detection schemes. We compare our attack to the beamsplitting attack and show
that security against beamsplitting attack does not necessarily imply security
against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of
beamsplitting attac
The problem of mutually unbiased bases in dimension 6
We outline a discretization approach to determine the
maximal number of mutually unbiased bases in dimension 6. We
describe the basic ideas and introduce the most important definitions
to tackle this famous open problem which has been open for
the last 10 years. Some preliminary results are also listed
Distinguishing two-qubit states using local measurements and restricted classical communication
The problem of unambiguous state discrimination consists of determining which
of a set of known quantum states a particular system is in. One is allowed to
fail, but not to make a mistake. The optimal procedure is the one with the
lowest failure probability. This procedure has been extended to bipartite
states where the two parties, Alice and Bob, are allowed to manipulate their
particles locally and communicate classically in order to determine which of
two possible two-particle states they have been given. The failure probability
of this local procedure has been shown to be the same as if the particles were
together in the same location. Here we examine the effect of restricting the
classical communication between the parties, either allowing none or
eliminating the possibility that one party's measurement depends on the result
of the other party's. These issues are studied for two-qubit states, and
optimal procedures are found. In some cases the restrictions cause increases in
the failure probability, but in other cases they do not. Applications of these
procedures, in particular to secret sharing, are discussed.Comment: 18 pages, two figure
Violations of local realism with quNits up to N=16
Predictions for systems in entangled states cannot be described in local
realistic terms. However, after admixing some noise such a description is
possible. We show that for two quNits (quantum systems described by N
dimensional Hilbert spaces) in a maximally entangled state the minimal
admixture of noise increases monotonically with N. The results are a direct
extension of those of Kaszlikowski et. al., Phys. Rev. Lett. {\bf 85}, 4418
(2000), where results for were presented. The extension up to N=16 is
possible when one defines for each N a specially chosen set of observables. We
also present results concerning the critical detectors efficiency beyond which
a valid test of local realism for entangled quNits is possible.Comment: 5 pages, 3 ps picture
- …
