1 research outputs found
Characterization of extrasolar terrestrial planets from diurnal photometric variability
The detection of massive planets orbiting nearby stars has become almost
routine, but current techniques are as yet unable to detect terrestrial planets
with masses comparable to the Earth's. Future space-based observatories to
detect Earth-like planets are being planned. Terrestrial planets orbiting in
the habitable zones of stars-where planetary surface conditions are compatible
with the presence of liquid water-are of enormous interest because they might
have global environments similar to Earth's and even harbor life. The light
scattered by such a planet will vary in intensity and colour as the planet
rotates; the resulting light curve will contain information about the planet's
properties. Here we report a model that predicts features that should be
discernible in light curves obtained by low-precision photometry. For
extrasolar planets similar to Earth we expect daily flux variations up to
hundreds of percent, depending sensitively on ice and cloud cover. Qualitative
changes in surface or climate generate significant changes in the predicted
light curves. This work suggests that the meteorological variability and the
rotation period of an Earth-like planet could be derived from photometric
observations. Other properties such as the composition of the surface (e.g.,
ocean versus land fraction), climate indicators (for example ice and cloud
cover), and perhaps even signatures of Earth-like plant life could be
constrained or possibly, with further study, even uniquely determined.Comment: Published in Nature. 9 pages including 3 figure
