14,569 research outputs found
Disentanglement and decoherence in two-spin and three-spin systems under dephasing
We compare disentanglement and decoherence rates within two-spin and
three-spin entangled systems subjected to all possible combinations of local
and collective pure dephasing noise combinations. In all cases, the bipartite
entanglement decay rate is found to be greater than or equal to the
dephasing-decoherence rates and often significantly greater. This sharpens
previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68,
165322 (2003)] and extends them to the three-spin context.Comment: 17 page
Coherent State Quantum Key Distribution with Entanglement Witnessing
An entanglement witness approach to quantum coherent state key distribution
and a system for its practical implementation are described. In this approach,
eavesdropping can be detected by a change in sign of either of two witness
functions, an entanglement witness S or an eavesdropping witness W. The effects
of loss and eavesdropping on system operation are evaluated as a function of
distance. Although the eavesdropping witness W does not directly witness
entanglement for the system, its behavior remains related to that of the true
entanglement witness S. Furthermore, W is easier to implement experimentally
than S. W crosses the axis at a finite distance, in a manner reminiscent of
entanglement sudden death. The distance at which this occurs changes measurably
when an eavesdropper is present. The distance dependance of the two witnesses
due to amplitude reduction and due to increased variance resulting from both
ordinary propagation losses and possible eavesdropping activity is provided.
Finally, the information content and secure key rate of a continuous variable
protocol using this witness approach are given
A new algorithm for recognizing the unknot
The topological underpinnings are presented for a new algorithm which answers
the question: `Is a given knot the unknot?' The algorithm uses the braid
foliation technology of Bennequin and of Birman and Menasco. The approach is to
consider the knot as a closed braid, and to use the fact that a knot is
unknotted if and only if it is the boundary of a disc with a combinatorial
foliation. The main problems which are solved in this paper are: how to
systematically enumerate combinatorial braid foliations of a disc; how to
verify whether a combinatorial foliation can be realized by an embedded disc;
how to find a word in the the braid group whose conjugacy class represents the
boundary of the embedded disc; how to check whether the given knot is isotopic
to one of the enumerated examples; and finally, how to know when we can stop
checking and be sure that our example is not the unknot.Comment: 46 pages. Published copy, also available at
http://www.maths.warwick.ac.uk/gt/GTVol2/paper9.abs.htm
Volume fluctuations and geometrical constraints in granular packs
Structural organization and correlations are studied in very large packings
of equally sized acrylic spheres, reconstructed in three-dimensions by means of
X-ray computed tomography. A novel technique, devised to analyze correlations
among more than two spheres, shows that the structural organization can be
conveniently studied in terms of a space-filling packing of irregular
tetrahedra. The study of the volume distribution of such tetrahedra reveals an
exponential decay in the region of large volumes; a behavior that is in very
good quantitative agreement with theoretical prediction. I argue that the
system's structure can be described as constituted of two phases: 1) an
`unconstrained' phase which freely shares the volume; 2) a `constrained' phase
which assumes configurations accordingly with the geometrical constraints
imposed by the condition of non-overlapping between spheres and mechanical
stability. The granular system exploits heterogeneity maximizing freedom and
entropy while constraining mechanical stability.Comment: 5 pages, 4 figure
Hierarchical Temporal Representation in Linear Reservoir Computing
Recently, studies on deep Reservoir Computing (RC) highlighted the role of
layering in deep recurrent neural networks (RNNs). In this paper, the use of
linear recurrent units allows us to bring more evidence on the intrinsic
hierarchical temporal representation in deep RNNs through frequency analysis
applied to the state signals. The potentiality of our approach is assessed on
the class of Multiple Superimposed Oscillator tasks. Furthermore, our
investigation provides useful insights to open a discussion on the main aspects
that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian
Workshop on Neural Networks, WIRN 201
Turning Statistical Physics Models Into Materials Design Engines
Despite the success statistical physics has enjoyed at predicting the
properties of materials for given parameters, the inverse problem, identifying
which material parameters produce given, desired properties, is only beginning
to be addressed. Recently, several methods have emerged across disciplines that
draw upon optimization and simulation to create computer programs that tailor
material responses to specified behaviors. However, so far the methods
developed either involve black-box techniques, in which the optimizer operates
without explicit knowledge of the material's configuration space, or they
require carefully tuned algorithms with applicability limited to a narrow
subclass of materials. Here we introduce a formalism that can generate
optimizers automatically by extending statistical mechanics into the realm of
design. The strength of this new approach lies in its capability to transform
statistical models that describe materials into optimizers to tailor them. By
comparing against standard black-box optimization methods, we demonstrate how
optimizers generated by this formalism can be faster and more effective, while
remaining straightforward to implement. The scope of our approach includes new
possibilities for solving a variety of complex optimization and design problems
concerning materials both in and out of equilibrium
Experimental Violation of Bell's Inequality in Spatial-Parity Space
We report the first experimental violation of Bell's inequality in the
spatial domain using the Einstein--Podolsky--Rosen state. Two-photon states
generated via optical spontaneous parametric downconversion are shown to be
entangled in the parity of their one-dimensional transverse spatial profile.
Superpositions of Bell states are prepared by manipulation of the optical
pump's transverse spatial parity--a classical parameter. The Bell-operator
measurements are made possible by devising simple optical arrangements that
perform rotations in the one-dimensional spatial-parity space of each photon of
an entangled pair and projective measurements onto a basis of even--odd
functions. A Bell-operator value of 2.389 +- 0.016 is recorded, a violation of
the inequality by more than 24 standard deviations.Comment: 10 pages, 3 figures, 1 Tabl
Correlation induced non-Abelian quantum holonomies
In the context of two-particle interferometry, we construct a parallel
transport condition that is based on the maximization of coincidence intensity
with respect to local unitary operations on one of the subsystems. The
dependence on correlation is investigated and it is found that the holonomy
group is generally non-Abelian, but Abelian for uncorrelated systems. It is
found that our framework contains the L\'{e}vay geometric phase [2004 {\it J.
Phys. A: Math. Gen.} {\bf 37} 1821] in the case of two-qubit systems undergoing
local SU(2) evolutions.Comment: Minor corrections; journal reference adde
- …
