802 research outputs found

    Spin dynamics of a Mn atom in a semiconductor quantum dot under resonant optical excitation

    Full text link
    We analyze the spin dynamics of an individual magnetic atom (Mn) inserted in a II-VI semiconductor quantum dot under resonant optical excitation. In addition to standard optical pumping expected for a resonant excitation, we show that for particular conditions of laser detuning and excitation intensity, the spin population can be trapped in the state which is resonantly excited. This effect is modeled considering the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field. This spin population trapping mechanism is controlled by the combined effect of the coupling with the laser field and the coherent interaction between the different Mn spin states induced by an anisotropy of the strain in the plane of the quantum dot

    Optical control of the spin state of two Mn atoms in a quantum dot

    Get PDF
    We report on the optical spectroscopy of the spin of two magnetic atoms (Mn) embedded in an individual quantum dot interacting with either a single electron, a single exciton and single trion. As a result of their interaction to a common entity, the Mn spins become correlated. The dynamics of this process is probed by time resolved spectroscopy, that permits to determine the optical orientation time in the range of a few tens of nsns. In addition, we show that the energy of the collective spin states of the two Mn atoms can be tuned through the optical Stark effect induced by a resonant laser field

    Ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies

    Full text link
    We develop a model for ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies. This model applies to (i) magnetic materials with both uniaxial and cubic anisotropies, and (ii) magnetic nanoparticles with effective core and surface anisotropies; We numerically compute the resonance frequency as a function of the field and the resonance field as a function of the direction of the applied field for an arbitrary ratio of cubic-to-uniaxial anisotropy. We also provide some approximate analytical expressions in the case of weak cubic anisotropy. We propose a method that uses these expressions for estimating the uniaxial and cubic anisotropy constants, and for determining the relative orientation of the cubic anisotropy axes with respect to the crystal principle axes. This method is applicable to the analysis of experimental data of resonance type measurements for which we give a worked example of an iron thin film with mixed anisotropy.Comment: 7 pages, 3 figure

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

    Full text link
    We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure

    Spin injection in Silicon at zero magnetic field

    Get PDF
    In this letter, we show efficient electrical spin injection into a SiGe based \textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field \textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.Comment: accepted in AP

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    Quantitative analysis of shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy

    Full text link
    Shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy (XMCD-PEEM) is a recent technique, in which the photon intensity in the shadow of an object lying on a surface, may be used to gather information about the three-dimensional magnetization texture inside the object. Our purpose here is to lay the basis of a quantitative analysis of this technique. We first discuss the principle and implementation of a method to simulate the contrast expected from an arbitrary micromagnetic state. Text book examples and successful comparison with experiments are then given. Instrumental settings are finally discussed, having an impact on the contrast and spatial resolution : photon energy, microscope extraction voltage and plane of focus, microscope background level, electric-field related distortion of three-dimensional objects, Fresnel diffraction or photon scattering

    Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns

    Get PDF
    We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures (Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and 11 %. Their crystalline structure, morphology and composition have been investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy and x-ray diffraction. In the whole range of growth temperatures and Mn concentrations, we observed the formation of manganese rich nanostructures embedded in a nearly pure germanium matrix. Growth temperature mostly determines the structural properties of Mn-rich nanostructures. For low growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal decomposition resulting in the formation of vertical one-dimensional nanostructures (nanocolumns). Moreover we show in this paper the influence of growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns size and density. For temperatures higher than 180deg C, we observed the formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns and nanoclusters coexist. Combining high resolution TEM and superconducting quantum interference device magnetometry, we could evidence at least four different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc nanocolumns (120 K 400 K) and (iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte

    Magnetic Anisotropy of a Single Cobalt Nanoparticle

    Full text link
    Using a new microSQUID set-up, we investigate magnetic anisotropy in a single 1000-atoms cobalt cluster. This system opens new fields in the characterization and the understanding of the origin of magnetic anisotropy in such nanoparticles. For this purpose, we report three-dimensional switching field measurements performed on a 3 nm cobalt cluster embedded in a niobium matrix. We are able to separate the different magnetic anisotropy contributions and evidence the dominating role of the cluster surface.Comment: 4 pages, 8 figure
    corecore