7,533 research outputs found
Quality requirements for reclaimed/recycled water
Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants
Relaxation mechanisms of the persistent spin helix
We study the lifetime of the persistent spin helix in semiconductor quantum
wells with equal Rashba- and linear Dresselhaus spin-orbit interactions. In
order to address the temperature dependence of the relevant spin relaxation
mechanisms we derive and solve semiclassical spin diffusion equations taking
into account spin-dependent impurity scattering, cubic Dresselhaus spin-orbit
interactions and the effect of electron-electron interactions. For the
experimentally relevant regime we find that the lifetime of the persistent spin
helix is mainly determined by the interplay of cubic Dresselhaus spin-orbit
interaction and electron-electron interactions. We propose that even longer
lifetimes can be achieved by generating a spatially damped spin profile instead
of the persistent spin helix state.Comment: 12 pages, 2 figure
Antenna-enhanced Optoelectronic Probing of Carbon Nanotubes
We report on the first antenna-enhanced optoelectronic microscopy studies on
nanoscale devices. By coupling the emission and excitation to a scanning
optical antenna, we are able to locally enhance the electroluminescence and
photocurrent along a carbon nanotube device. We show that the emission source
of the electroluminescence can be point-like with a spatial extension below 20
nm. Topographic and antenna-enhanced photocurrent measurements reveal that the
emission takes place at the location of highest local electric field indicating
that the mechanism behind the emission is the radiative decay of excitons
created via impact excitation
The temperature and entropy of CFT on time-dependent backgrounds
We express the AdS-Schwarzschild black-hole configuration in coordinates such
that the boundary metric is of the FLRW type. We review how this construction
can be used in order to calculate the stress-energy tensor of the dual CFT on
the FLRW background. We deduce the temperature and entropy of the CFT, which
are related to the temperature and entropy of the black hole. We find that the
entropy is proportional to the area of an apparent horizon, different from the
black-hole event horizon. For a dS boundary we reproduce correctly the
intrinsic temperature of dS space.Comment: 19 pages, major revision, several comments added, version to appear
in JHE
Identifying signature whistles from recordings of groups of unrestrained bottlenose dolphins (Tursiops truncatus)
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 29 (2013): 109–122, doi:10.1111/j.1748-7692.2011.00549.x.Bottlenose dolphins (Tursiops truncatus) have individually-distinctive signature whistles. Each individual dolphin develops its own unique frequency modulation pattern and uses it to broadcast its identity. However, underwater sound localization is challenging, and researchers have had difficulties identifying signature whistles. The traditional method to identify them involved isolating individuals. In this context, the signature whistle is the most commonly produced whistle type of an animal. However, most studies on wild dolphins cannot isolate animals. We present a novel method, SIGID, that can identify signature whistles in recordings of groups of dolphins recorded via a single hydrophone. We found that signature whistles tend to be delivered in bouts with whistles of the same type occurring within 1-10 s of each other. Non-signature whistles occur over longer or shorter periods, and this distinction can be used to identify signature whistles in a recording. We tested this method on recordings from wild and captive bottlenose dolphins and show thresholds needed to identify signature whistles reliably. SIGID will facilitate the study of signature whistle use in the wild, signature whistle diversity between different populations, and potentially allow signature whistles to be used in mark-recapture studies.This work was supported by Dolphin Quest, National Oceanic and Atmospheric Administration (NOAA) Fisheries Service, Disney’s Animal Programs and Mote Marine Laboratory (R.S.W.), Harbor Branch Oceanographic Institute (L.S.S. and R.S.W.), and a Royal Society University Research Fellowship (V.M.J.)
Lectures on Chiral Disorder in QCD
I explain the concept that light quarks diffuse in the QCD vacuum following
the spontaneous breakdown of chiral symmetry. I exploit the striking analogy to
disordered electrons in metals, identifying, among others, the universal regime
described by random matrix theory, diffusive regime described by chiral
perturbation theory and the crossover between these two domains.Comment: Lectures given at the Cargese Summer School, August 6-18, 200
The dynamics of quark-gluon plasma and AdS/CFT
In these pedagogical lectures, we present the techniques of the AdS/CFT
correspondence which can be applied to the study of real time dynamics of a
strongly coupled plasma system. These methods are based on solving
gravitational Einstein's equations on the string/gravity side of the AdS/CFT
correspondence. We illustrate these techniques with applications to the
boost-invariant expansion of a plasma system. We emphasize the common
underlying AdS/CFT description both in the large proper time regime where
hydrodynamic dynamics dominates, and in the small proper time regime where the
dynamics is far from equilibrium. These AdS/CFT methods provide a fascinating
arena interrelating General Relativity phenomenae with strongly coupled gauge
theory physics.Comment: 35 pages, 3 figures. Lectures at the 5th Aegean summer school, `From
gravity to thermal gauge theories: the AdS/CFT correspondence'. To appear in
the proceedings in `Lecture Notes in Physics
Reggeon exchange from gauge/gravity duality
We perform the analysis of quark-antiquark Reggeon exchange in meson-meson
scattering, in the framework of the gauge/gravity correspondence in a confining
background. On the gauge theory side, Reggeon exchange is described as
quark-antiquark exchange in the t channel between fast projectiles. The
corresponding amplitude is represented in terms of Wilson loops running along
the trajectories of the constituent quarks and antiquarks. The paths of the
exchanged fermions are integrated over, while the "spectator" fermions are
dealt with in an eikonal approximation. On the gravity side, we follow a
previously proposed approach, and we evaluate the Wilson-loop expectation value
by making use of gauge/gravity duality for a generic confining gauge theory.
The amplitude is obtained in a saddle-point approximation through the
determination near the confining horizon of a Euclidean "minimal surface with
floating boundaries", i.e., by fixing the trajectories of the exchanged quark
and antiquark by means of a minimisation procedure, which involves both area
and length terms. After discussing, as a warm-up exercise, a simpler problem on
a plane involving a soap film with floating boundaries, we solve the
variational problem relevant to Reggeon exchange, in which the basic geometry
is that of a helicoid. A compact expression for the Reggeon-exchange amplitude,
including the effects of a small fermion mass, is then obtained through
analytic continuation from Euclidean to Minkowski space-time. We find in
particular a linear Regge trajectory, corresponding to a Regge-pole singularity
supplemented by a logarithmic cut induced by the non-zero quark mass. The
analytic continuation leads also to companion contributions, corresponding to
the convolution of the same Reggeon-exchange amplitude with multiple elastic
rescattering interactions between the colliding mesons.Comment: 60+1 pages, 14 figure
On asimuthal anisotropy in fragmentation of classical relativistic string
A fragmenting relativistic string is widely used for modelling particle
production via quark-gluon strings formed in hadron inelastic interactions of
high energies. In this note we focus on motion and fragmentation of
relativistic string with non-zero transverse separation of its ends and study
this scenario as a possible mechanism bringing anisotropy into the asimuthal
angle disribution of produced particles in inelastic interactions of hadrons.Comment: 12 pages, 6 figure
On the Couplings of Vector Mesons in AdS/QCD
We address, in the AdS/CFT context, the issue of the universality of the
couplings of the rho meson to other hadrons. Exploring some models, we find
that generically the rho-dominance prediction f_\rho g_{\rho H H}=m_\rho^2 does
not hold, and that g_{\rho H H} is not independent of the hadron H. However, we
prove that, in any model within the AdS/QCD context, there are two limiting
regimes where the g_{\rho H H}, along with the couplings of all excited vector
mesons as well, become H-independent: (1) when H is created by an operator of
large dimension, and (2) when H is a highly-excited hadron. We also find a
sector of a particular model where universality for the rho coupling is exact.
Still, in none of these cases need it be true that f_\rho g_\rho=m_\rho^2,
although we find empirically that the relation does hold approximately (up to a
factor of order two) within the models we have studied.Comment: 28 pages, 3 figures. ver 2: Comments about the commutability of two
universal limits in the D3/D7 case corrected. Typos corrected. ver 3:
Substantive revisions of certain calculations, with improved conventions,
correction of typos, clarifications, new formulas, new figures; no changes in
essential results or conclusion
- …
