8 research outputs found
Investigation of the effect of reinforcement parameters on the stability of ribbed spherical shells
Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe
To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO4), inorganic nitrogen (NO3-N; NH4-N), calcium (Ca), magnesium (Mg) and potassium ( K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available ( 14 regions, 17 sites). Annual average SO4 deposition during the 1990s ranged between 7.3 and 28.4 kg ha(-1) per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha(-1) per year, of which 41-67% was nitrate (NO3-N). Over the period of record, SO4 concentration in deposition decreased in 13/14 ( 13 out of 14 total) regions and SO4 in runoff decreased at 14/17 catchments. In contrast, NO3-N concentrations in deposition decreased in only 1/14 regions, while NH4-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH4-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% ( median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% ( median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition ( 31-100%; median 94%) was retained in the catchments, although there was a tendency for greater NO3-N leaching at sites receiving higher (< 7 kg ha(-1) per year) bulk inorganic N deposition. Mass
Regional Assessment of N saturation using foliar and root d15N
N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root and N concentration, soil C:N, mineralization and nitrification. The dataset included sites in northeastern North America, Colorado, Alaska, southern Chile and Europe. Local drivers of N cycling (net nitrification and mineralization, and forest floor and soil C:N) were more closely coupled with foliar than the regional driver of N deposition. Foliar increased non-linearly with nitrification:mineralization ratio and decreased with forest floor C:N. Foliar was more strongly related to nitrification rates than was foliar N concentration, but concentration was more strongly correlated with N deposition. Root was more tightly coupled to forest floor properties than was foliar . We observed a pattern of decreasing foliar values across the following species: American beech>yellow birch>sugar maple. Other factors that affected foliar included species composition and climate. Relationships between foliar and soil variables were stronger when analyzed on a species by species basis than when many species were lumped. European sites showed distinct patterns of lower foliar , due to the importance of ammonium deposition in this region. Our results suggest that examining values of foliage may improve understanding of how forests respond to the cascading effects of N deposition
