593 research outputs found
Propagation of light through small clouds of cold interacting atoms
We demonstrate experimentally that a cloud of cold atoms with a size
comparable to the wavelength of light can induce large group delays on a laser
pulse when the laser is tightly focused on it and is close to an atomic
resonance. Delays as large as -10 ns are observed, corresponding to
"superluminal" propagation with negative group velocities as low as -300 m/s.
Strikingly, this large delay is associated with a moderate extinction owing to
the very small size of the cloud and to the light-induced interactions between
atoms. It implies that a large phase shift is imprinted on the continuous laser
beam, and opens interesting perspectives for applications to quantum
technologies.Comment: 5 pages, 3 figures Supplemental Material : 2 pages, 2 Figure
Experimental test of nonlocal realistic theories without the rotational symmetry assumption
We analyze the class of nonlocal realistic theories that was originally
considered by Leggett [Found. Phys. 33, 1469 (2003)] and tested by us in a
recent experiment [Nature (London) 446, 871 (2007)]. We derive an
incompatibility theorem that works for finite numbers of polarizer settings and
that does not require the previously assumed rotational symmetry of the
two-particle correlation functions. The experimentally measured case involves
seven different measurement settings. Using polarization-entangled photon
pairs, we exclude this broader class of nonlocal realistic models by
experimentally violating a new Leggett-type inequality by 80 standard
deviations.Comment: Published versio
Quantum key distribution over 30km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods
We present a full implementation of a quantum key distribution system using
energy-time entangled photon pairs and functioning with a 30km standard telecom
fiber quantum channel. Two bases of two orthogonal states are implemented and
the setup is quite robust to environmental constraints such as temperature
variation. Two different ways to manage chromatic dispersion in the quantum
channel are discussed.Comment: 10 pages, 4 figure
Experimental delayed-choice entanglement swapping
Motivated by the question, which kind of physical interactions and processes
are needed for the production of quantum entanglement, Peres has put forward
the radical idea of delayed-choice entanglement swapping. There, entanglement
can be "produced a posteriori, after the entangled particles have been measured
and may no longer exist". In this work we report the first realization of
Peres' gedanken experiment. Using four photons, we can actively delay the
choice of measurement-implemented via a high-speed tunable bipartite state
analyzer and a quantum random number generator-on two of the photons into the
time-like future of the registration of the other two photons. This effectively
projects the two already registered photons onto one definite of two mutually
exclusive quantum states in which either the photons are entangled (quantum
correlations) or separable (classical correlations). This can also be viewed as
"quantum steering into the past"
Secure quantum channels with correlated twin laser beams
This work is the development and analysis of the recently proposed quantum
cryptographic protocol, based on the use of the two-mode coherently correlated
states. The protocol is supplied with the cryptographic control procedures. The
quantum noise influence on the channel error properties is examined. State
detection features are proposed
Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source
As typically implemented, single photon sources cannot be made to produce
single photons with high probability, while simultaneously suppressing the
probability of yielding two or more photons. Because of this, single photon
sources cannot really produce single photons on demand. We describe a
multiplexed system that allows the probabilities of producing one and more
photons to be adjusted independently, enabling a much better approximation of a
source of single photons on demand.Comment: 4 pages, LaTex, 2 figures, twocolumn and RevTex Style for PR
A Compact Solid State Detector for Small Angle Particle Tracking
MIDAS (MIcrostrip Detector Array System) is a compact silicon tracking
telescope for charged particles emitted at small angles in intermediate energy
photonuclear reactions. It was realized to increase the angular acceptance of
the DAPHNE detector and used in an experimental program to check the
Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron, MAMI. MIDAS
provides a trigger for charged hadrons, p/pi identification and particle
tracking in the region 7 deg < theta < 16 deg. In this paper we present the
main characteristics of MIDAS and its measured performances.Comment: 13 pages (9 figures). Submitted to NIM
Emissive Langmuir Probes in the Strong Emission Regime for the Determination of the Plasma Properties
The determination of the plasma potential Vpl of unmagnetized plasmas by using the floating potential of emissive Langmuir probes operated in the strong emission regime is investigated. The experiments evidence that, for most cases, the electron thermionic emission is orders of magnitude larger than the plasma thermal electron current. The temperature-dependent floating potentials of negatively biased Vpmenor queVpl emissive probes are in agreement with the predictions of a simple phenomenological model that considers, in addition to the plasma electrons, an ad-ditional electron group that contributes to the probe current. The latter would be constituted by a fraction of the repelled electron thermionic current, which might return back to the probe with a different energy spectrum. Its origin would be a plasma potential well formed in the plasma sheath around the probe, acting as a virtual cathode or by collisions and electron thermalization pro-cesses. These results suggest that, for probe bias voltages close to the plasma potential Vp?Vpl, two electron populations coexist, i.e., the electrons from the plasma with temperatureTeand a large group of returned thermionic electrons. These results question the theoretical possibility of measuring the electron temperature by using emissive probes biased to potentials Vp about lower equal than ?Vpl
A Concentration/Purification Scheme for Two Partially Entangled Photon Pairs
An experimental scheme for concentrating entanglement in partially entangled
photon pairs is proposed. In this scheme, two separated parties obtain one
maximally entangled photon pair from previously shared two partially entangled
photon pairs by local operations and classical communication. A practical
realization of the proposed scheme is discussed, which uses imperfect photon
detectors and spontaneous parametric down-conversion as a photon source. This
scheme also works for purifying a class of mixed states.Comment: 8 pages, 3 figure
- …
