972 research outputs found
When Are We Done with Games?
From an early point, games have been promoted as important challenges within the research field of Artificial Intelligence (AI). Recent developments in machine learning have allowed a few AI systems to win against top professionals in even the most challenging video games, including Dota 2 and StarCraft. It thus may seem that AI has now achieved all of the long-standing goals that were set forth by the research community. In this paper, we introduce a black box approach that provides a pragmatic way of evaluating the fairness of AI vs. human competitions, by only considering motoric and perceptual fairness on the competitors' side. Additionally, we introduce the notion of extrinsic and intrinsic factors of a game competition and apply these to discuss and compare the competitions in relation to human vs. human competitions. We conclude that Dota 2 and StarCraft II are not yet mastered by AI as they so far only have been able to win against top professionals in limited competition structures in restricted variants of the games
Direct 16S rRNA gene sequencing of polymicrobial culture-negative samples with analysis of mixed chromatograms
Udgivelsesdato: 2010-AprTwo cases involving polymicrobial culture-negative samples were investigated by 16S rRNA gene sequencing, with analysis of mixed chromatograms. Fusobacterium necrophorum, Prevotella intermedia and Streptococcus constellatus were identified from pleural fluid in a patient with Lemierre's syndrome and Neisseria meningitidis and Escherichia coli were identified from a petechia in a patient with meningococcal disease
Four cases of bacteremia caused by Oscillibacter ruminantium, a newly described species
ABSTRACT
The genus
Oscillibacter
has been known since 2007, but no association to human infection has been reported. Here, we present four cases of
Oscillibacter ruminantium
bacteremia from hospitals across Denmark from 2001 to 2010. Correct identification is now possible, as the 16S rRNA gene sequence was recently made publicly available.
</jats:p
An Improved Interactive Streaming Algorithm for the Distinct Elements Problem
The exact computation of the number of distinct elements (frequency moment
) is a fundamental problem in the study of data streaming algorithms. We
denote the length of the stream by where each symbol is drawn from a
universe of size . While it is well known that the moments can
be approximated by efficient streaming algorithms, it is easy to see that exact
computation of requires space . In previous work, Cormode
et al. therefore considered a model where the data stream is also processed by
a powerful helper, who provides an interactive proof of the result. They gave
such protocols with a polylogarithmic number of rounds of communication between
helper and verifier for all functions in NC. This number of rounds
can quickly make such
protocols impractical.
Cormode et al. also gave a protocol with rounds for the exact
computation of where the space complexity is but the total communication . They managed to give round protocols with
complexity for many other interesting problems
including , Inner product, and Range-sum, but computing exactly with
polylogarithmic space and communication and rounds remained open.
In this work, we give a streaming interactive protocol with rounds
for exact computation of using bits of space and the communication is . The update
time of the verifier per symbol received is .Comment: Submitted to ICALP 201
EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary
We have discovered a doubly eclipsing, bound, quadruple star system in the
field of K2 Campaign 7. EPIC 219217635 is a stellar image with that
contains an eclipsing binary (`EB') with d and a second EB with
d. We have obtained followup radial-velocity (`RV')
spectroscopy observations, adaptive optics imaging, as well as ground-based
photometric observations. From our analysis of all the observations, we derive
good estimates for a number of the system parameters. We conclude that (1) both
binaries are bound in a quadruple star system; (2) a linear trend to the RV
curve of binary A is found over a 2-year interval, corresponding to an
acceleration, cm s; (3) small
irregular variations are seen in the eclipse-timing variations (`ETVs')
detected over the same interval; (4) the orbital separation of the quadruple
system is probably in the range of 8-25 AU; and (5) the orbital planes of the
two binaries must be inclined with respect to each other by at least
25. In addition, we find that binary B is evolved, and the cooler and
currently less massive star has transferred much of its envelope to the
currently more massive star. We have also demonstrated that the system is
sufficiently bright that the eclipses can be followed using small ground-based
telescopes, and that this system may be profitably studied over the next decade
when the outer orbit of the quadruple is expected to manifest itself in the ETV
and/or RV curves.Comment: Accepted for publication in MNRA
MASCARA-2 b: A hot Jupiter transiting the A-star HD185603
In this paper we present MASCARA-2 b, a hot Jupiter transiting the
A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million
flux measurements of the star, corresponding to a total of almost 3000 hours of
observations, revealing a periodic dimming in the flux with a depth of .
Photometric follow-up observations were performed with the NITES and IAC80
telescopes and spectroscopic measurements were obtained with the Hertzsprung
SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of
at a distance of , has a radius of and place a
upper limit on the mass of . HD 185603 is a
rapidly rotating early-type star with an effective temperature of
and a mass and radius of
, , respectively. Contrary
to most other hot Jupiters transiting early-type stars, the projected planet
orbital axis and stellar spin axis are found to be aligned with . The brightness of the host star and the high equilibrium
temperature, , of MASCARA-2 b make it a suitable target for
atmospheric studies from the ground and space. Of particular interest is the
detection of TiO, which has recently been detected in the similarly hot planets
WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&
Identifying transcripts associated with aggressiveness in wheat yellow rust by transcriptomic sequencing
- …
