159 research outputs found
Large-k Limit of Multi-Point Propagators in the RG Formalism
Renormalized versions of cosmological perturbation theory have been very
successful in recent years in describing the evolution of structure formation
in the weakly non-linear regime. The concept of multi-point propagators has
been introduced as a tool to quantify the relation between the initial matter
distribution and the final one and to push the validity of the approaches to
smaller scales. We generalize the n-point propagators that have been considered
until now to include a new class of multi-point propagators that are relevant
in the framework of the renormalization group formalism. The large-k results
obtained for this general class of multi-point propagators match the results
obtained earlier both in the case of Gaussian and non-Gaussian initial
conditions. We discuss how the large-k results can be used to improve on the
accuracy of the calculations of the power spectrum and bispectrum in the
presence of initial non-Gaussianities.Comment: 30 page
Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces
We present an improved prediction of the nonlinear perturbation theory (PT)
via the Lagrangian picture, which was originally proposed by Matsubara (2008).
Based on the relations between the power spectrum in standard PT and that in
Lagrangian PT, we derive analytic expressions for the power spectrum in
Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing
the improved prediction of Lagrangian PT with -body simulations in real
space, we find that the 2-loop corrections can extend the valid range of wave
numbers where we can predict the power spectrum within 1% accuracy by a factor
of 1.0 (), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT
results. On the other hand, in all redshift ranges, the higher-order
corrections are shown to be less significant on the two-point correlation
functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is
already accurate enough to explain the nonlinearity on those scales in -body
simulations.Comment: 18pages, 4 figure
Reconstructing the spectrum of the pregalactic density field from astronomical data
In this paper we evaluate the spectrum of the pregalactic density field on
scales Mpc from a variety of astronomical data. APM
data on in six narrow magnitude is used, after correcting to
possible evolutionary effects, to constrain the spectrum of galaxy clustering
on scales . Fitting power spectra of CDM
models to the data at all depths requires if the primordial
index and if the spectrum is tilted with . Then we
compare the peculiar velocity field predicted by the APM spectrum of galaxy
(light) distribution with the actual velocity data. The two fields are
consistent and the comparison suggests that the bias factor is scale
independent with (0.2-0.3). The next dataset used comes
from the cluster correlation data. We calculate in detail the amplification of
the cluster correlation function due to gravitational clustering and use the
data on both the slope of the cluster correlation function and its
amplitude-richness dependence. Cluster masses are normalized using the Coma
cluster. We find that CDM models are hard to reconcile with all the three
datasets: APM data on , the data on cluster correlation function,
and the data on the latter's amplitude-richness dependence. We show that the
data on the amplitude-richness dependence can be used directly to obtain the
spectrum of the pregalactic density field. Applying the method to the data, we
recover the density field on scales between 5 and 25Mpc whose slope is
in good agreement with the APM data on the same scales. Requiring the two
amplitudes to be the same, fixes the value of to be 0.3 in agreement
with observations of the dynamics of the Coma cluster. Finally we use the dataComment: to be published in Ap.J - minor revision + typos correcte
Light Higgsino in Heavy Gravitino Scenario with Successful Electroweak Symmetry Breaking
We consider, in the context of the minimal supersymmetric standard model, the
case where the gravitino weighs 10^6 GeV or more, which is preferred by various
cosmological difficulties associated with unstable gravitinos. Despite the
large Higgs mixing parameter B together with the little hierarchy to other soft
supersymmetry breaking masses, a light higgsino with an electroweak scale mass
leads to successful electroweak symmetry breaking, at the price of fine-tuning
the higgsino mixing mu parameter. Furthermore the light higgsinos produced at
the decays of gravitinos can constitute the dark matter of the universe. The
heavy squark mass spectrum of O(10^4) GeV can increase the Higgs boson mass to
about 125 GeV or higher.Comment: 13 pages, 3 figures; v2: version to appear in JHE
SuperWIMP Dark Matter Signals from the Early Universe
Cold dark matter may be made of superweakly-interacting massive particles,
superWIMPs, that naturally inherit the desired relic density from late decays
of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in
supergravity and Kaluza-Klein gravitons from extra dimensions. These particles
are impossible to detect in all dark matter experiments. We find, however, that
superWIMP dark matter may be discovered through cosmological signatures from
the early universe. In particular, superWIMP dark matter has observable
consequences for Big Bang nucleosynthesis and the cosmic microwave background
(CMB), and may explain the observed underabundance of 7Li without upsetting the
concordance between deuterium and CMB baryometers. We discuss implications for
future probes of CMB black body distortions and collider searches for new
particles. In the course of this study, we also present a model-independent
analysis of entropy production from late-decaying particles in light of WMAP
data.Comment: 19 pages, 5 figures, typos correcte
Large Scale Pressure Fluctuations and Sunyaev-Zel'dovich Effect
The Sunyaev-Zel'dovich (SZ) effect associated with pressure fluctuations of
the large scale structure gas distribution will be probed with current and
upcoming wide-field small angular scale cosmic microwave background
experiments. We study the generation of pressure fluctuations by baryons which
are present in virialized dark matter halos and by baryons present in small
overdensities. For collapsed halos, assuming the gas distribution is in
hydrostatic equilibrium with matter density distribution, we predict the
pressure power spectrum and bispectrum associated with the large scale
structure gas distribution by extending the dark matter halo approach which
describes the density field in terms of correlations between and within halos.
The projected pressure power spectrum allows a determination of the resulting
SZ power spectrum due to virialized structures. The unshocked photoionized
baryons present in smaller overdensities trace the Jeans-scale smoothed dark
matter distribution. They provide a lower limit to the SZ effect due to large
scale structure in the absence of massive collapsed halos. We extend our
calculations to discuss higher order statistics, such as bispectrum and
skewness in SZ data. The SZ-weak lensing cross-correlation is suggested as a
probe of correlations between dark matter and baryon density fields, while the
probability distribution functions of peak statistics of SZ halos in wide field
CMB data can be used as a probe of cosmology and non-Gaussian evolution of
large scale structure pressure fluctuations.Comment: 16 pages, 9 figures; Revised with expanded discussions. Phys. Rev. D.
(in press
Constraints on Galaxy Bias, Matter Density, and Primordial Non--Gausianity from the PSCz Galaxy Redshift Survey
We compute the bispectrum for the \IRAS PSCz catalog and find that the galaxy
distribution displays the characteristic signature of gravity. Assuming
Gaussian initial conditions, we obtain galaxy biasing parameters
and , with no sign of
scale-dependent bias for h/Mpc. These results impose stringent
constraints on non-Gaussian initial conditions. For dimensional scaling models
with statistics, we find N>49, which implies a constraint on
primordial skewness .Comment: 4 pages, 3 embedded figures, uses revtex style file, minor changes to
reflect published versio
Graviton Cosmology in Universal Extra Dimensions
In models of universal extra dimensions, gravity and all standard model
fields propagate in the extra dimensions. Previous studies of such models have
concentrated on the Kaluza-Klein (KK) partners of standard model particles.
Here we determine the properties of the KK gravitons and explore their
cosmological implications. We find the lifetimes of decays to KK gravitons, of
relevance for the viability of KK gravitons as dark matter. We then discuss the
primordial production of KK gravitons after reheating. The existence of a tower
of KK graviton states makes such production extremely efficient: for reheat
temperature T_RH and d extra dimensions, the energy density stored in gravitons
scales as T_RH^{2+3d/2}. Overclosure and Big Bang nucleosynthesis therefore
stringently constrain T_RH in all universal extra dimension scenarios. At the
same time, there is a window of reheat temperatures low enough to avoid these
constraints and high enough to generate the desired thermal relic density for
KK WIMP and superWIMP dark matter.Comment: 19 pages, 1 figur
Cosmic Strings and the String Dilaton
The existence of a dilaton (or moduli) with gravitational-strength coupling
to matter imposes stringent constraints on the allowed energy scale of cosmic
strings, . In particular, superheavy gauge strings with are ruled out unless the dilaton mass m_{\phi} \gsim 100 TeV,
while the currently popular value imposes the bound \eta
\lsim 3 \times 10^{11} GeV. Similar constraints are obtained for global
topological defects. Some non-standard cosmological scenarios which can avoid
these constraints are pointed out.Comment: 16 page
The Formation of Cosmic Structures in a Light Gravitino Dominated Universe
We analyse the formation of cosmic structures in models where the dark matter
is dominated by light gravitinos with mass of eV -- 1 keV, as predicted
by gauge-mediated supersymmetry (SUSY) breaking models. After evaluating the
number of degrees of freedom at the gravitinos decoupling (), we compute
the transfer function for matter fluctuations and show that gravitinos behave
like warm dark matter (WDM) with free-streaming scale comparable to the galaxy
mass scale. We consider different low-density variants of the WDM model, both
with and without cosmological constant, and compare the predictions on the
abundances of neutral hydrogen within high-redshift damped Ly-- systems
and on the number density of local galaxy clusters with the corresponding
observational constraints. We find that none of the models satisfies both
constraints at the same time, unless a rather small value (\mincir
0.4) and a rather large Hubble parameter (\magcir 0.9) is assumed.
Furthermore, in a model with warm + hot dark matter, with hot component
provided by massive neutrinos, the strong suppression of fluctuation on scales
of \sim 1\hm precludes the formation of high-redshift objects, when the
low-- cluster abundance is required. We conclude that all different variants
of a light gravitino DM dominated model show strong difficulties for what
concerns cosmic structure formation.
This gives a severe cosmological constraint on the gauge-mediated SUSY
breaking scheme.Comment: 28 pages,Latex, submitted for publication to Phys.Rev.
- …
