450 research outputs found
The complementarity of astrometric and radial velocity exoplanet observations - Determining exoplanet mass with astrometric snapshots
We obtain full information on the orbital parameters by combining radial
velocity and astrometric measurements by means of Bayesian inference. We sample
the parameter probability densities of orbital model parameters with a Markov
chain Monte Carlo (McMC) method in simulated observational scenarios to test
the detectability of planets with orbital periods longer than the observational
timelines. We show that, when fitting model parameters simultaneously to
measurements from both sources, it is possible to extract much more information
from the measurements than when using either source alone. We demonstrate this
by studying the orbit of recently found extra-solar planet HD 154345 b.Comment: 6 pages, 9 figures. Accepted to A&
Probing a regular orbit with spectral dynamics
We have extended the spectral dynamics formalism introduced by Binney &
Spergel, and have implemented a semi-analytic method to represent regular
orbits in any potential, making full use of their regularity. We use the
spectral analysis code of Carpintero & Aguilar to determine the nature of an
orbit (irregular, regular, resonant, periodic) from a short-time numerical
integration. If the orbit is regular, we approximate it by a truncated Fourier
time series of a few tens of terms per coordinate. Switching to a description
in action-angle variables, this corresponds to a reconstruction of the
underlying invariant torus. We then relate the uniform distribution of a
regular orbit on its torus to the non-uniform distribution in the space of
observables by a simple Jacobian transformation between the two sets of
coordinates. This allows us to compute, in a cell-independent way, all the
physical quantities needed in the study of the orbit, including the density and
in the line-of-sight velocity distribution, with much increased accuracy. The
resulting flexibility in the determination of the orbital properties, and the
drastic reduction of storage space for the orbit library, provide a significant
improvement in the practical application of Schwarzschild's orbit superposition
method for constructing galaxy models. We test and apply our method to
two-dimensional orbits in elongated discs, and to the meridional motion in
axisymmetric potentials, and show that for a given accuracy, the spectral
dynamics formalism requires an order of magnitude fewer computations than the
more traditional approaches.Comment: 13 pages, 18 eps figures, submitted to MNRA
Modelling of laboratory data of bi-directional reflectance of regolith surface containing Alumina
Bidirectional reflectance of a surface is defined as the ratio of the
scattered radiation at the detector to the incident irradiance as a function of
geometry. The accurate knowledge of the bidirectional reflection function (BRF)
of layers composed of discrete, randomly positioned scattering particles is
very essential for many remote sensing, engineering, biophysical applications
and in different areas of Astrophysics. The computations of BRF's for plane
parallel particulate layers are usually reduced to solve the radiative transfer
equation (RTE) by the existing techniques. In this work we present our
laboratory data on bidirectional reflectance versus phase angle for two sample
sizes of 0.3 and 1 of Alumina for the He-Ne laser at 632.8 nm (red) and
543.5nm(green) wavelength. The nature of the phase curves of the asteroids
depends on the parameters like- particle size, composition, porosity, roughness
etc. In our present work we analyse the data which are being generated using
single scattering phase function i.e. Mie theory considering particles to be
compact sphere. The well known Hapke formula will be considered along with
different particle phase function such as Mie and Henyey Greenstein etc to
model the laboratory data obtained at the asteroid laboratory of Assam
University.Comment: 5 pages, 5 figures [accepted for publication in Publications of the
Astronomical Society of Australia (PASA) on 8 June, 2011
Brief communication "Application of mobile laser scanning in snow cover profiling"
We present a snowmobile-based mobile mapping system and its first application to snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application). We demonstrate the applicability of the instrument to snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS) campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale
Microscopic dynamics underlying the anomalous diffusion
The time dependent Tsallis statistical distribution describing anomalous
diffusion is usually obtained in the literature as the solution of a non-linear
Fokker-Planck (FP) equation [A.R. Plastino and A. Plastino, Physica A, 222, 347
(1995)]. The scope of the present paper is twofold. Firstly we show that this
distribution can be obtained also as solution of the non-linear porous media
equation. Secondly we prove that the time dependent Tsallis distribution can be
obtained also as solution of a linear FP equation [G. Kaniadakis and P.
Quarati, Physica A, 237, 229 (1997)] with coefficients depending on the
velocity, that describes a generalized Brownian motion. This linear FP equation
is shown to arise from a microscopic dynamics governed by a standard Langevin
equation in presence of multiplicative noise.Comment: 4 pag. - no figures. To appear on Phys. Rev. E 62, September 200
Volumes and bulk densities of forty asteroids from ADAM shape modeling
Disk-integrated photometric data of asteroids do not contain accurate
information on shape details or size scale. Additional data such as
disk-resolved images or stellar occultation measurements further constrain
asteroid shapes and allow size estimates. We aim to use all available
disk-resolved images of about forty asteroids obtained by the Near-InfraRed
Camera (Nirc2) mounted on the W.M. Keck II telescope together with the
disk-integrated photometry and stellar occultation measurements to determine
their volumes. We can then use the volume, in combination with the known mass,
to derive the bulk density. We download and process all asteroid disk-resolved
images obtained by the Nirc2 that are available in the Keck Observatory Archive
(KOA). We combine optical disk-integrated data and stellar occultation profiles
with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM)
algorithm for the shape and size modeling. Our approach provides constraints on
the expected uncertainty in the volume and size as well. We present shape
models and volume for 41 asteroids. For 35 asteroids, the knowledge of their
mass estimates from the literature allowed us to derive their bulk densities.
We clearly see a trend of lower bulk densities for primitive objects
(C-complex) than for S-complex asteroids. The range of densities in the
X-complex is large, suggesting various compositions. Moreover, we identified a
few objects with rather peculiar bulk densities, which is likely a hint of
their poor mass estimates. Asteroid masses determined from the Gaia astrometric
observations should further refine most of the density estimates.Comment: Accepted for publication in A&
On the Orbit Structure of the Logarithmic Potential
We investigate the dynamics in the logarithmic galactic potential with an
analytical approach. The phase-space structure of the real system is
approximated with resonant detuned normal forms constructed with the method
based on the Lie transform. Attention is focused on the properties of the axial
periodic orbits and of low order `boxlets' that play an important role in
galactic models. Using energy and ellipticity as parameters, we find analytical
expressions of several useful indicators, such as stability-instability
thresholds, bifurcations and phase-space fractions of some orbit families and
compare them with numerical results available in the literature.Comment: To appear on the Astrophysical Journa
The Resolved Asteroid Program - Size, shape, and pole of (52) Europa
With the adaptive optics (AO) system on the 10 m Keck-II telescope, we
acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa
on 2005 January 20. The epochs covered its rotation period and, by following
its changing shape and orientation on the plane of sky, we obtained its
triaxial ellipsoid dimensions and spin pole location. An independent
determination from images at three epochs obtained in 2007 is in good agreement
with these results. By combining these two data sets, along with a single epoch
data set obtained in 2003, we have derived a global fit for (52) Europa of
diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent
spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA;
Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35).
Using the average of all mass determinations available forEuropa, we derive a
density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with
the shape model of Michalowski et al. (A&A 416, 2004), derived from optical
lightcurves, illustrates excellent agreement, although several edge features
visible in the images are not rendered by the model. We therefore derived a
complete 3-D description of Europa's shape using the KOALA algorithm by
combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We
use this 3-D shape model to assess these departures from ellipsoidal shape.
Flat facets (possible giant craters) appear to be less distinct on (52) Europa
than on other C-types that have been imaged in detail. We show that fewer giant
craters, or smaller craters, is consistent with its expected impact history.
Overall, asteroid (52) Europa is still well modeled as a smooth triaxial
ellipsoid with dimensions constrained by observations obtained over several
apparitions.Comment: Accepted for publication in Icaru
First albedo determination of 2867 Steins, target of the Rosetta mission
We present the first albedo determination of 2867 Steins, the asteroid target
o f the Rosetta space mission together with 21 Lutetia. The data were obtained
in polarimetric mode at the ESO-VLT telescope with the FORS1 instrument in the
V and R filters. Observations were carried out from Jun e to August 2005
covering the phase angle range from 10.3 deg. to 28.3 deg., allowing the
determination of the asteroid albedo by the well known experimenta l
relationship between the albedo and the slope of the polarimetric curve at th e
inversion angle. The measured polarization values of Steins are small,
confirming an E-type cla ssification for this asteroid, as already suggested
from its spectral propertie s. The inversion angle of the polarization curve in
the V and R filters is resp ectively of 17.3 +/-1.5deg. and 18.4+/-1.0 deg.,
and the corresponding sl ope parameter is of 0.037+/-0.003 %/deg and
0.032+/-0.003 %/deg. On the basis of its polarimetric slope value, we have
derived an albedo of 0.45 +/-0.1, that gives an estimated diameter of 4.6 km,
assuming an absolute V ma gnitude of 13.18 mag.Comment: 4 pages, 4 figures, letter accepted for pubblication on A&
Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry
Aims. We determine the physical properties (spin state and shape) of asteroid
(21) Lutetia, target of the ESA Rosetta mission, to help in preparing for
observations during the flyby on 2010 July 10 by predicting the orientation of
Lutetia as seen from Rosetta.
Methods. We use our novel KOALA inversion algorithm to determine the physical
properties of asteroids from a combination of optical lightcurves,
disk-resolved images, and stellar occultations, although the latter are not
available for (21) Lutetia.
Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of
({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame
(equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved
sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the
southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the
flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on"
and more rectangular as seen "equator-on". The best-fit model suggests the
presence of several concavities. The largest of these is close to the north
pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and
Astrophysic
- …
