118 research outputs found
On the exchange of intersection and supremum of sigma-fields in filtering theory
We construct a stationary Markov process with trivial tail sigma-field and a
nondegenerate observation process such that the corresponding nonlinear
filtering process is not uniquely ergodic. This settles in the negative a
conjecture of the author in the ergodic theory of nonlinear filters arising
from an erroneous proof in the classic paper of H. Kunita (1971), wherein an
exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page
Random walks in random Dirichlet environment are transient in dimension
We consider random walks in random Dirichlet environment (RWDE) which is a
special type of random walks in random environment where the exit probabilities
at each site are i.i.d. Dirichlet random variables. On , RWDE are
parameterized by a -uplet of positive reals. We prove that for all values
of the parameters, RWDE are transient in dimension . We also prove that
the Green function has some finite moments and we characterize the finite
moments. Our result is more general and applies for example to finitely
generated symmetric transient Cayley graphs. In terms of reinforced random
walks it implies that directed edge reinforced random walks are transient for
.Comment: New version published at PTRF with an analytic proof of lemma
One-sided versus two-sided stochastic descriptions
It is well-known that discrete-time finite-state Markov Chains, which are
described by one-sided conditional probabilities which describe a dependence on
the past as only dependent on the present, can also be described as
one-dimensional Markov Fields, that is, nearest-neighbour Gibbs measures for
finite-spin models, which are described by two-sided conditional probabilities.
In such Markov Fields the time interpretation of past and future is being
replaced by the space interpretation of an interior volume, surrounded by an
exterior to the left and to the right.
If we relax the Markov requirement to weak dependence, that is, continuous
dependence, either on the past (generalising the Markov-Chain description) or
on the external configuration (generalising the Markov-Field description), it
turns out this equivalence breaks down, and neither class contains the other.
In one direction this result has been known for a few years, in the opposite
direction a counterexample was found recently. Our counterexample is based on
the phenomenon of entropic repulsion in long-range Ising (or "Dyson") models.Comment: 13 pages, Contribution for "Statistical Mechanics of Classical and
Disordered Systems
Alternative proof for the localization of Sinai's walk
We give an alternative proof of the localization of Sinai's random walk in
random environment under weaker hypothesis than the ones used by Sinai.
Moreover we give estimates that are stronger than the one of Sinai on the
localization neighborhood and on the probability for the random walk to stay
inside this neighborhood
- …
