118 research outputs found

    On the exchange of intersection and supremum of sigma-fields in filtering theory

    Full text link
    We construct a stationary Markov process with trivial tail sigma-field and a nondegenerate observation process such that the corresponding nonlinear filtering process is not uniquely ergodic. This settles in the negative a conjecture of the author in the ergodic theory of nonlinear filters arising from an erroneous proof in the classic paper of H. Kunita (1971), wherein an exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page

    Random walks in random Dirichlet environment are transient in dimension d3d\ge 3

    Full text link
    We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On Zd\Z^d, RWDE are parameterized by a 2d2d-uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension d3d\ge 3. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for d3d\ge 3.Comment: New version published at PTRF with an analytic proof of lemma

    One-sided versus two-sided stochastic descriptions

    Get PDF
    It is well-known that discrete-time finite-state Markov Chains, which are described by one-sided conditional probabilities which describe a dependence on the past as only dependent on the present, can also be described as one-dimensional Markov Fields, that is, nearest-neighbour Gibbs measures for finite-spin models, which are described by two-sided conditional probabilities. In such Markov Fields the time interpretation of past and future is being replaced by the space interpretation of an interior volume, surrounded by an exterior to the left and to the right. If we relax the Markov requirement to weak dependence, that is, continuous dependence, either on the past (generalising the Markov-Chain description) or on the external configuration (generalising the Markov-Field description), it turns out this equivalence breaks down, and neither class contains the other. In one direction this result has been known for a few years, in the opposite direction a counterexample was found recently. Our counterexample is based on the phenomenon of entropic repulsion in long-range Ising (or "Dyson") models.Comment: 13 pages, Contribution for "Statistical Mechanics of Classical and Disordered Systems

    Alternative proof for the localization of Sinai's walk

    Full text link
    We give an alternative proof of the localization of Sinai's random walk in random environment under weaker hypothesis than the ones used by Sinai. Moreover we give estimates that are stronger than the one of Sinai on the localization neighborhood and on the probability for the random walk to stay inside this neighborhood

    Random Markov processes and uniform martingales

    Get PDF

    Nonuniqueness ing-functions

    No full text
    corecore