15,707 research outputs found

    Experimental Characterization of Electrical Discharge Machining of Aluminum 6061 T6 Alloy using Different Dielectrics

    Get PDF
    Electrical discharge machining is a non-traditional machining method broadly employed in industries for machining of parts that have typical profiles and require great accuracy. This paper investigates the effects of electrical parameters: pulse-on-time and current on three performance measures (material removal rate, microstructures and electrode wear rate), using distilled water and kerosene as dielectrics. A comparison between dielectrics for the machining of aluminum 6061 T6 alloy material in terms of performance measures was performed. Aluminum 6061 T6 alloy material was selected, because of its growing use in the automotive and aerospace industrial sectors. The experimental sequence was designed using Taguchi technique of L9 orthogonal array by changing three levels of pulse-on-time and current, and test runs were performed separately for each dielectric. The results obtained show that greater electrode wear rate (EWR) and higher material removal rate (MRR) were achieved with distilled water when compared with kerosene. These greater EWR and MRR responses can be attributed to the early breakage of the weak oxide and carbide layers formed on the tool and alloy material surfaces, respectively. The innovative contributions of this study include, but are not limited to, the possibility of machining of aluminum 6061 T6 alloy with graphite electrode to enhance machinability and fast cutting rate employing two different dielectrics.Peer reviewe

    Model Prediction-Based Approach to Fault Tolerant Control with Applications

    Get PDF
    Abstract— Fault-tolerant control (FTC) is an integral component in industrial processes as it enables the system to continue robust operation under some conditions. In this paper, an FTC scheme is proposed for interconnected systems within an integrated design framework to yield a timely monitoring and detection of fault and reconfiguring the controller according to those faults. The unscented Kalman filter (UKF)-based fault detection and diagnosis system is initially run on the main plant and parameter estimation is being done for the local faults. This critical information\ud is shared through information fusion to the main system where the whole system is being decentralized using the overlapping decomposition technique. Using this parameter estimates of decentralized subsystems, a model predictive control (MPC) adjusts its parameters according to the\ud fault scenarios thereby striving to maintain the stability of the system. Experimental results on interconnected continuous time stirred tank reactors (CSTR) with recycle and quadruple tank system indicate that the proposed method is capable to correctly identify various faults, and then controlling the system under some conditions

    Improved Distributed Estimation Method for Environmental\ud time-variant Physical variables in Static Sensor Networks

    Get PDF
    In this paper, an improved distributed estimation scheme for static sensor networks is developed. The scheme is developed for environmental time-variant physical variables. The main contribution of this work is that the algorithm in [1]-[3] has been extended, and a filter has been designed with weights, such that the variance of the estimation errors is minimized, thereby improving the filter design considerably\ud and characterizing the performance limit of the filter, and thereby tracking a time-varying signal. Moreover, certain parameter optimization is alleviated with the application of a particular finite impulse response (FIR) filter. Simulation results are showing the effectiveness of the developed estimation algorithm

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Local distortion of MnO6_6 octahedron in La1x_{1-x}Srx_xMnO3+δ_{3+\delta} (x = 0.1 to 0.9): an EXAFS study

    Full text link
    Room temperature Mn K-edge extended x-ray absorption fine structure (EXAFS) studies were carried out on La1x_{1-x}Srx_xMnO3+δ_{3+\delta} (x = 0.1 to 0.9) compounds. It is found from the detailed EXAFS analysis that the local structure around Mn sites is different from the global structure inferred from x-ray diffraction, especially for x <= 0.4, indicating presence of local distortions in MnO6_6 octahedra. For the rhombohedral compounds, x = 0.1 to 0.3 the distortion is maximum for x = 0.1 and two bond lengths are seen- short one in basal plane and long one in apical plane. For compounds with x = 0.4 to 0.8 two short bonds in basal plane and four long bonds- two in the basal plane and remaining two in the apical plane are seen. For the compounds up to x = 0.3 compositions long bond length decreases and short bond length increases with increase in x whereas for the compounds 0.4 <= x <= 0.8 both types of bond lengths decrease. Such behaviour of bond lengths is an indication of the changed nature of distortion from Jahn-Teller type to breathing type at x = 0.4 composition.Comment: 16 pages, 1 table, 8 figure

    Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    Full text link
    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of around 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.Comment: 19 pages, 7 figures, to be published at Scientific Report
    corecore