101 research outputs found
A Claudin-9–Based Ion Permeability Barrier Is Essential for Hearing
Hereditary hearing loss is one of the most common birth defects, yet the majority of genes required for audition is thought to remain unidentified. Ethylnitrosourea (ENU)–mutagenesis has been a valuable approach for generating new animal models of deafness and discovering previously unrecognized gene functions. Here we report on the characterization of a new ENU–induced mouse mutant (nmf329) that exhibits recessively inherited deafness. We found a widespread loss of sensory hair cells in the hearing organs of nmf329 mice after the second week of life. Positional cloning revealed that the nmf329 strain carries a missense mutation in the claudin-9 gene, which encodes a tight junction protein with unknown biological function. In an epithelial cell line, heterologous expression of wild-type claudin-9 reduced the paracellular permeability to Na+ and K+, and the nmf329 mutation eliminated this ion barrier function without affecting the plasma membrane localization of claudin-9. In the nmf329 mouse line, the perilymphatic K+ concentration was found to be elevated, suggesting that the cochlear tight junctions were dysfunctional. Furthermore, the hair-cell loss in the claudin-9–defective cochlea was rescued in vitro when the explanted hearing organs were cultured in a low-K+ milieu and in vivo when the endocochlear K+-driving force was diminished by deletion of the pou3f4 gene. Overall, our data indicate that claudin-9 is required for the preservation of sensory cells in the hearing organ because claudin-9–defective tight junctions fail to shield the basolateral side of hair cells from the K+-rich endolymph. In the tight-junction complexes of hair cells, claudin-9 is localized specifically to a subdomain that is underneath more apical tight-junction strands formed by other claudins. Thus, the analysis of claudin-9 mutant mice suggests that even the deeper (subapical) tight-junction strands have biologically important ion barrier function
MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene
<p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA (mtDNA) mutations account for at least 5% of cases of postlingual, nonsyndromic hearing impairment. Among them, mutation A1555G is frequently found associated with aminoglycoside-induced and/or nonsyndromic hearing loss in families presenting with extremely variable clinical phenotypes. Biochemical and genetic data have suggested that nuclear background is the main factor involved in modulating the phenotypic expression of mutation A1555G. However, although a major nuclear modifying locus was located on chromosome 8p23.1 and regardless intensive screening of the region, the gene involved has not been identified.</p> <p>Methods</p> <p>With the aim to gain insights into the factors that determine the phenotypic expression of A1555G mutation, we have analysed in detail different genetic and genomic elements on 8p23.1 region (<it>DEFA3 </it>gene absence, <it>CLDN23 </it>gene and <it>MRPS18CP2 </it>pseudogene) in a group of 213 A1555G carriers.</p> <p>Results</p> <p>Family based association studies identified a positive association for a polymorphism on <it>MRPS18CP2 </it>and an overrepresentation of <it>DEFA3 </it>gene absence in the deaf group of A1555G carriers.</p> <p>Conclusion</p> <p>Although none of the factors analysed seem to have a major contribution to the phenotype, our findings provide further evidences of the involvement of 8p23.1 region as a modifying locus for A1555G 12S rRNA gene mutation.</p
Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions
The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation.The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Within the inner ear, the regulation of fluid and ion movement is essential for normal auditory and vestibular function. The same ion and fluid channels active in the inner ear may have similar roles with fluid regulation in the middle ear.Middle and inner ears from BALB/c mice were processed for immunohistochemistry of 10 specific ion homeostasis factors to determine if similar transport and barrier mechanisms are present in the tympanic cavity. Examination also was made of BALB/c mice middle ears after transtympanic injection with heat-killed Haemophilus influenza to determine if these channels are impacted by inflammation.The most prominent ion channels in the middle ear included aquaporins 1, 4 and 5, claudin 3, ENaC and Na(+),K(+)-ATPase. Moderate staining was found for GJB2, KCNJ10 and KCNQ1. The inflamed middle ear epithelium showed increased staining due to expected cellular hypertrophy. Localization of ion channels was preserved within the inflamed middle ear epithelium.The middle ear epithelium is a dynamic environment with intrinsic mechanisms for the control of ion and water transport to keep the middle ear clear of fluids. Compromise of these processes during middle ear disease may underlie the accumulation of effusions and suggests they may be a therapeutic target for effusion control
A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour
BACKGROUND: For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. CONCLUSIONS/SIGNIFICANCE: We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms
The unique electrical properties in an extracellular fluid of the mammalian cochlea; their functional roles, homeostatic processes, and pathological significance
Endothelial Cell, Pericyte, and Perivascular Resident Macrophage-Type Melanocyte Interactions Regulate Cochlear Intrastrial Fluid–Blood Barrier Permeability
Mutations of the Mouse ELMO Domain Containing 1 Gene (Elmod1) Link Small GTPase Signaling to Actin Cytoskeleton Dynamics in Hair Cell Stereocilia
Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda2J). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1–5 of Elmod1, and rda2J is an intragenic duplication of exons 3–8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia
Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss
Spinster homolog 2 (Spns2) acts as a Sphingosine-1-phosphate (S1P) transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP) from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6), but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing
Carrier frequency of the GJB2 mutations that cause hereditary hearing loss in the Japanese population.
Hearing impairment is one of the most common sensory disorders that affect ~1 in 1000 children, and half of them are considered to be hereditary. Information about the carrier frequencies of mutations that underlie autosomal recessive disorders is indispensable for accurate genetic counseling to predict the probability of patients' children's disease. However, there have been few reports specific to the Japanese population. GJB2 mutations are reported to be the most frequent cause of hereditary hearing loss, and the mutation spectrum and frequency of GJB2 mutations were reported to vary among different ethnic groups. In this study, we investigated the carrier frequency of GJB2 mutations and the mutation spectrum in 509 individuals randomly selected from the general Japanese population. We show that the carrier frequencies of the two most common pathogenic mutations are 1.57% (8/509) for c.235delC and 1.77% (9/509) for p.Val37Ile. In addition to these mutations, we found two pathogenic variants (p.[Gly45Glu;Tyr136*] and p.Arg143Trp), and the total carrier frequency was estimated to be around 3.73% (19/509). We also detected six unclassified variants, including two novel variants (p.Cys60Tyr and p.Phe106Leu), with the former predicted to be pathogenic. These findings will provide indispensable information for genetic counseling in the Japanese population
- …
