5,673 research outputs found

    Sintering and properties of Si3N4 with and without additives by HIP treatment

    Get PDF
    Hot Isostatic Pressing (HIP) of Si3N4 powders with and without additives was performed using a glass container, and various kinds of pressureless-sintered Si3N4 were HIP'ed without a container. The effects of HIP treatment on density, microstructure, flexural strength, microhardness, and fracture toughness on Si3N4 ceramics were studied. Using a glass container it was difficult to reach theoretical density. The microhardness of HIP'ed Si3N4 without additives was low, and the fracture toughness of HIP'ed Si3N4 with and without additives was 22 to 25 W/m-K, and it decreased with increasing the amount of additives. The density and flexural strength, and hardness of pressureless-sintered Si3N4 which contained Al2O and Y2O3 as oxide additives were remarkably improved by HIP treatment using nitrogen as a pressure transmitting gas. It is very important to select the sintering conditions for fabricating the presintered body of Si3N4 in order to improve the mechanical properties of Si3N4 by HIP treatment

    Large thermal Hall coefficient in bismuth

    Full text link
    We present a systematical study of thermal Hall effect on a bismuth single crystal by measuring resistivity, Hall coefficient, and thermal conductivity under magnetic field, which shows a large thermal Hall coefficient comparable to the largest one in a semiconductor HgSe. We discuss that this is mainly due to a large mobility and a low thermal conductivity comparing theoretical calculations, which will give a route for controlling heat current in electronic devices.Comment: 4pages, 3 figure

    High-temperature deep-level transient spectroscopy system for defect studies in wide-bandgap semiconductors

    Full text link
    Full investigation of deep defect states and impurities in wide-bandgap materials by employing commercial transient capacitance spectroscopy is a challenge, demanding very high temperatures. Therefore, a high-temperature deep-level transient spectroscopy (HT-DLTS) system was developed for measurements up to 1100 K. The upper limit of the temperature range allows for the study of deep defects and trap centers in the bandgap, deeper than previously reported by DLTS characterization in any material. Performance of the system was tested by conducting measurements on the well-known intrinsic defects in n-type 4H-SiC in the temperature range 300-950 K. Experimental observations performed on 4H-SiC Schottky diodes were in good agreement with the literatures. However, the DLTS measurements were restricted by the operation and quality of the electrodes

    CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions

    Full text link
    Thermal stability factor (delta) of recording layer was studied in perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with various CoFeB recording layer thicknesses and junction sizes. In all series of p-MTJs with different thicknesses, delta is virtually independent of the junction sizes of 48-81 nm in diameter. The values of delta increase linearly with increasing the recording layer thickness. The slope of the linear fit is explained well by a model based on nucleation type magnetization reversal.Comment: 12 pages, 5 figure

    New Supporting Evidence for the Overdensity of Galaxies around the Radio-Loud Quasar SDSS J0836+0054 at z =5.8

    Full text link
    Recently, Zheng et al. (2005) found evidence for an overdensity of galaxies around a radio-loud quasar, SDSS J0836+0054, at z=5.8 (a five arcmin2^2 region). We have examined our deep optical imaging data (B, V, r', i', z', and NB816) taken with the Suprime-Cam on the Subaru Telescope. The NB816 narrow-band filter (lambda_c = 815 nm and Δλ=12\Delta\lambda = 12 nm) is suitable for searching for Lyα\alpha emitters at z5.7z\approx 5.7. We have found a new strong Lyα\alpha emitter at z5.7z \approx 5.7 close to object B identified by Zheng et al. Further, the non detection of the nine objects selected by Zheng et al. (2005) in our B, V, and r' images provides supporting evidence that they are high-z objects.Comment: 5 pages, 1 figure, accepted for PAS

    Bending and vibration of functionally graded material sandwich plates using an accurate theory

    Full text link
    In this paper, the bending and the free flexural vibration behaviour of sandwich functionally graded material (FGM) plates are investigated using QUAD-8 shear flexible element developed based on higher order structural theory. This theory accounts for the realistic variation of the displacements through the thickness. The governing equations obtained here are solved for static analysis considering two types of sandwich FGM plates, viz., homogeneous face sheets with FGM core and FGM face sheets with homogeneous hard core. The in-plane and rotary inertia terms are considered for vibration studies. The accuracy of the present formulation is tested considering the problems for which three-dimensional elasticity solutions are available. A detailed numerical study is carried out based on various higher-order models to examine the influence of the gradient index and the plate aspect ratio on the global/local response of different sandwich FGM plates.Comment: 28 pages, 6 figures, 9 table

    Limbic Regression with Derepression of Oedipal Feelings

    Get PDF
    Most knowledge of the normal preschool oedipal feelings for a parent of the opposite sex come from reconstructive analysis of neurologically normal adults or from observation of phallic stage children. We have discovered in the symptoms of a severely brain-damaged adolescent evidence of a slightly different and interesting type. It seems to result from a biological unmasking of repressed material by post-encephalitic age regression

    Quantum corrections to static solutions of Nahm equation and Sin-Gordon models via generalized zeta-function

    Full text link
    One-dimensional Yang-Mills Equations are considered from a point of view of a class of nonlinear Klein-Gordon-Fock models. The case of self-dual Nahm equations and non-self-dual models are discussed. A quasiclassical quantization of the models is performed by means of generalized zeta-function and its representation in terms of a Green function diagonal for a heat equation with the correspondent potential. It is used to evaluate the functional integral and quantum corrections to mass in the quasiclassical approximation. Quantum corrections to a few periodic (and kink) solutions of the Nahm as a particular case of the Ginzburg-Landau (phi-in-quadro) and and Sin-Gordon models are evaluated in arbitrary dimensions. The Green function diagonal for heat equation with a finite-gap potential is constructed by universal description via solutions of Hermit equation. An alternative approach based on Baker-Akhiezer functions for KP equation is proposed . The generalized zeta-function and its derivative at zero point as the quantum corrections to mass is expressed in terms of elliptic integrals.Comment: Workshop Nonlinear Physics and Experiment; Gallipoli, 200

    Beam-Based Alignment of the NuMI Target Station Components at FNAL

    Get PDF
    The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.Comment: higher resolution figures available on Fermilab Preprint Server (see SPIRES entry), accepted for publication in Nucl. Instr. and Meth.
    corecore