2,871 research outputs found

    On the Column Density of AGN Outflows: the Case of NGC 5548

    Get PDF
    We re-analyze the HST high resolution spectroscopic data of the intrinsic absorber in NGC 5548 and find that the C IV absorption column density is at least four times larger than previously determined. This increase arises from accounting for the kinematical nature of the absorber and from our conclusion that the outflow does not cover the narrow emission line region in this object. The improved column density determination begins to bridge the gap between the high column densities measured in the X-ray and the low ones previously inferred from the UV lines. Combined with our findings for outflows in high luminosity quasars these results suggest that traditional techniques for measuring column densities: equivalent width, curve-of-growth and Gaussian modeling, are of limited value when applied to absorption associated with AGN outflows.Comment: Published ApJ version (566, 699), including a new figure with FUSE data and a useful algebraic expression for the optical depth solutio

    Contrasting the UV and X-ray O VI Column Density Inferred for the Outflow in NGC 5548

    Full text link
    We compare X-ray and UV spectroscopic observations of NGC 5548. Both data sets show O VI absorption troughs associated with the AGN outflow from this galaxy. We find that the robust lower limit on the column density of the O VI X-ray trough is seven times larger than the column density found in a study of the O VI UV troughs. This discrepancy suggests that column densities inferred for UV troughs of Seyfert outflows are often severely underestimated. We identify the physical limitations of the UV Gaussian modeling as the probable explanation of the O VI column density discrepancy. Specifically, Gaussian modeling cannot account for a velocity dependent covering fraction, and it is a poor representation for absorption associated with a dynamical outflow. Analysis techniques that use a single covering fraction value for each absorption component suffer from similar limitations. We conclude by suggesting ways to improve the UV analysis.Comment: 16 pages, 1 figure, accepted for publication in Ap

    Functional interplay between NTP leaving group and base pair recognition during RNA polymerase II nucleotide incorporation revealed by methylene substitution.

    Get PDF
    RNA polymerase II (pol II) utilizes a complex interaction network to select and incorporate correct nucleoside triphosphate (NTP) substrates with high efficiency and fidelity. Our previous 'synthetic nucleic acid substitution' strategy has been successfully applied in dissecting the function of nucleic acid moieties in pol II transcription. However, how the triphosphate moiety of substrate influences the rate of P-O bond cleavage and formation during nucleotide incorporation is still unclear. Here, by employing β,γ-bridging atom-'substituted' NTPs, we elucidate how the methylene substitution in the pyrophosphate leaving group affects cognate and non-cognate nucleotide incorporation. Intriguingly, the effect of the β,γ-methylene substitution on the non-cognate UTP/dT scaffold (∼3-fold decrease in kpol) is significantly different from that of the cognate ATP/dT scaffold (∼130-fold decrease in kpol). Removal of the wobble hydrogen bonds in U:dT recovers a strong response to methylene substitution of UTP. Our kinetic and modeling studies are consistent with a unique altered transition state for bond formation and cleavage for UTP/dT incorporation compared with ATP/dT incorporation. Collectively, our data reveals the functional interplay between NTP triphosphate moiety and base pair hydrogen bonding recognition during nucleotide incorporation

    Dynamics of Warm-Absorbing Gas in Seyfert Galaxies: NGC 5548

    Get PDF
    A hydromagnetic (MHD) wind from a clumpy molecular accretion disk is invoked to explain observations of warm absorbing (WA) gas in UVX from Sy galaxies. This paper focuses on two issues: (1) compatibility of kinematics and dynamics of MHD wind with the observed properties of WAs; and (2) relationship between the UVX absorptions. We provide an in-depth comparison between the MHD model and the Sy 1 galaxy NGC 5548, which at high spectral resolution exhibits a number of discrete UV absorption components. We find that: (1) the total column densities of Ovii, Oviii and H, are reproduced by constraining the UV ion column densities of Civ and Nv in each component to lie within a factor of 2 of their observed values and optimizing over the possible sets of component ionization states and Civ column densities; (2) the WA exists in the outer part of the wind and is not a continuation of the flow in the BLR; and (3) the WA extends in radial and polar directions and is ionization-stratified. X-ray absorption is found to be heavily biased towards smaller r, and UV absorption originates at larger distances from the central continuum source. We show that the discrete absorption components along the line-of-sight are intrinsically clumpy. Density differences between kinematic components result in a range of ionization and recombination timescales. We further test the applicability of the MHD wind to WAs in general, by constructing a quasi-continuous flow model, and extending it to arbitrary aspect angles. We estimate the fraction of Sy 1s having detectable WAs with larger Ovii column density than Oviii, and the range of total H column densities. We also find that the ratio of Ovii to Oviii optical depths can serve as a new diagnostic of AGN aspect angle.Comment: Latex, 8 postscript figures. Astrophysical Journal, 536, June 10, in pres

    Keck Hires Observations of the QSO First J104459.6+365605: Evidence for a Large Scale Outflow

    Full text link
    This paper presents an analysis of a Keck HIRES spectrum of the QSO FIRST J104459.6+365605. The line of sight towards the QSO contains two clusters of outflowing clouds that give rise to broad blue shifted absorption lines. The outflow velocities of the clouds range from -200 to -1200 km/s and from -3400 to -5200 km/s, respectively. The width of the individual absorption lines ranges from 50 to more than 1000 km/s. The most prominent absorption lines are those of Mg II, Mg I, and Fe II. The low ionization absorption lines occur at the same velocities as the most saturated Mg II lines, showing that the Fe II, Mg I and Mg II line forming regions must be closely associated. Many absorption lines from excited states of Fe II are present, allowing a determination of the population of several low lying energy levels. From this we determine an electron density in the Fe II line forming regions of 4000 per cubic cm. Modelling the ionization state of the absorbing gas with this value of the electron density as a constraint, we find that the distance between the Fe II and Mg I line forming region and the continuum source is of order 700 parsec. From the correspondence in velocity between the Fe II, Mg I and Mg II lines we infer that the Mg II lines must be formed at the same distance. The Mg II absorption fulfills the criteria for Broad Absorption Lines defined by Weymann et al. (1991). This large distance is surprising, since BALs are generally thought to be formed in outflows at a much smaller distance from the nucleus.Comment: 34 pages, 11 figures. Accepted by The Astrophysical Journa

    Jet Acceleration by Tangled Magnetic Fields

    Get PDF
    We explore the possibility that extragalactic radio jets might be accelerated by highly disorganized magnetic fields that are strong enough to dominate the dynamics until the terminal Lorentz factor is reached. Following the twin-exhaust model by Blandford & Rees (1974), the collimation under this scenario is provided by the stratified thermal pressure from an external medium. The acceleration efficiency then depends on the pressure gradient of that medium. In order for this mechanism to work there must be continuous tangling of the magnetic field, changing the magnetic equation of state away from pure flux freezing (otherwise conversion of Poynting flux to kinetic energy flux is suppressed). This is a complementary approach to models in which the plasma is accelerated by large scale ordered fields. We include a simple prescription for magnetic dissipation, which leads to tradeoffs among conversion of magnetic energy into bulk kinetic energy, random particle energy, and radiation. We present analytic dynamical solutions of such jets, assess the effects of radiation drag, and comment on observational issues, such as the predicted polarization and synchrotron brightness. Finally, we try to make the connection to observed radio galaxies and gamma-ray bursts.Comment: 15 pages, 10 figures, accepted for publication in Ap

    Radio Emission and Particle Acceleration in SN 1993J

    Get PDF
    The radio light curves of SN 1993J are found to be well fit by a synchrotron spectrum, suppressed by external free-free absorption and synchrotron self-absorption. A standard r^-2 circumstellar medium is assumed, and found to be adequate. The magnetic field and number density of relativistic electrons behind the shock are determined. The strength of the magnetic field argues strongly for turbulent amplification behind the shock. The ratio of the magnetic and thermal energy density behind the shock is ~0.14. Synchrotron and Coulomb cooling dominate the losses of the electrons. The injected electron spectrum has a power law index -2.1, consistent with diffusive shock acceleration, and the number density scales with the thermal electron energy density. The total energy density of the relativistic electrons is, if extrapolated to gamma ~ 1, ~ 5x10^-4 of the thermal energy density. The free-free absorption required is consistent with previous calculations of the circumstellar temperature of SN 1993J, T_e ~ (2-10)x10^5 K. The relative importance of free-free absorption, Razin suppression, and the synchrotron self-absorption effect for other supernovae are briefly discussed. Guidelines for the modeling and interpretation of VLBI observations are given.Comment: accepted for Ap.

    The system parameters of DW Ursae Majoris

    Get PDF
    We present new constraints on the system parameters of the SW Sextantis star DW Ursae Majoris, based on ultraviolet (UV) eclipse observations with the Hubble Space Telescope. Our data were obtained during a low state of the system, in which the UV light was dominated by the hot white dwarf (WD) primary. Eclipse analysis, using the full Roche lobe geometry, allows us to set firm limits on the masses and radii of the system components and the distance between them: 0.67 \leq M_1/M_sun \leq 1.06, 0.008 \leq R_1/R_sun \leq 0.014, M_2/M_sun > 0.16, R_2/R_sun > 0.28 and a/R_sun > 1.05. For q = M_2/M_1 < 1.5 the inclination must satisfy i > 71 degrees. Using Smith & Dhillon's mass-period relation for CV secondaries, our estimates for the system parameters become M_1/M_sun = 0.77 \pm 0.07, R_1/R_sun = 0.012 \pm 0.001, M_2/M_sun = 0.30 \pm 0.10, R_2/R_sun = 0.34 \pm 0.04, q =0.39 \pm 0.12, i = 82 \pm 4 degrees and a/R_sun = 1.14 \pm 0.06. We have also estimated the spectral type of the secondary, M3.5 \pm 1.0, and distance to the system, d =930 \pm 160 pc, from time-resolved I- and K-band photometry. Finally, we have repeated Knigge et al.'s WD model atmosphere fit to the low-state UV spectrum of DW UMa in order to account for the higher surface gravity indicated by our eclipse analysis. In this way we obtained a second estimate for the distance, d = 590 \pm 100 pc, which allows us to obtain a second estimate for the spectral type of the secondary, M7 \pm 2.0. We conclude that the true value for the distance and spectral type will probably be in between the values obtained by the two methods.Comment: 23 pages including 5 figures and 3 tables. Accepted for publication in Ap
    corecore