11,494 research outputs found
The recurrence time of Dansgaard-Oeschger events and limits on the possible periodic component
By comparing the high-resolution isotopic records from the GRIP and NGRIP
icecores, we approximately separate the climate signal from local noise to
obtain an objective criterion for defining Dansgaard-Oeschger events. Our
analysis identifies several additional short lasting events, increasing the
total number of DO events to 27 in the period 12-90 kyr BP. The quasi-regular
occurrence of the DO events could indicate a stochastic or coherent resonance
mechanism governing their origin. From the distribution of waiting times we
obtain a statistical upper bound on the strength of a possible periodic
forcing. This finding indicates that the climate shifts are purely noise driven
with no underlying periodicity.Comment: 9 figure
Sensory milk properties at the farm level – the terroir dimension
In recent years, the Danish milk market has shown an increase in the consumption of organic milk as well as a growing variety of milk with specific features including farm milk. The production of milk from a single farm and pasture-based (PB) feeding regimes is of special interest as it implies a “sense of place” or terroir. The PB feeding regimes vary with season and might also vary on a day-to-day basis. It is therefore important to understand the impact of the feed on the sensory properties of the milk [1].
This study aims at demonstrating how analytical sensory analysis can provide important information about the influence of breed, season and variation in farm management from PB feeding regimes on the sensory properties of organic farm milk. The study was performed in 2007 and 2008 during two seasons (spring/autumn) representing 28 milk samples from 7 organic farms with either Holstein or Jersey cows. PB feeding regimes were based on pastures with varying amounts of white clover together with perennial ryegrass and supplement feeding with silage and concentrates. Significant results were found for season and breed with a larger variation in sensory flavour properties of spring milk and milk from Holstein cows. In general, there was a tendency of the milk being characterized as having a ‘greener’ odour, ‘sweet’ and ‘maize-like’ flavour in spring and a more ‘bitter’ taste in the autumn. The results show a distinct relation between sensory milk properties and the amount of pasture in the ration and white clover in the pasture. Relations to other production conditions such as composition of the supplement feed also tended to have an impact on the sensory characteristics of the milk.
It is thus concluded, that a sensory analytical tool can provide important information about the sensory properties of organic farm milk, reflecting time and place. Seasonal variations appear to be an important factor in the terroir dimension of milk and may be more actively used in relation to communication of the sensory properties to the consumer
Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops
Information is needed about root growth and N uptake of crops under different soil conditions to increase nitrogen use efficiency in horticultural production. The purpose of this study was to investigate if differences in vertical distribution of soil nitrogen (Ninorg) affected root growth and N uptake of a variety of horticultural crops. Two field experiments were performed each over 2 years with shallow or deep placement of soil Ninorg obtained by management of cover crops. Vegetable crops of leek, potato, Chinese cabbage, beetroot, summer squash and white cabbage reached root depths of 0.5, 0.7, 1.3, 1.9, 1.9 and more than 2.4 m, respectively, at harvest, and showed rates of root depth penetration from 0.2 to 1.5 mm day)1 C)1. Shallow placement of soil Ninorg resulted in greater N uptake in the shallow-rooted leek and potato. Deep placement of soil Ninorg resulted in greater rates of root depth penetration in the deep-rooted Chinese cabbage, summer squash and white cabbage, which increased their depth by 0.2–0.4 m. The root frequency was decreased in shallow soil layers (white cabbage) and increased in deep soil layers (Chinese cabbage, summer squash and white cabbage). The influence of vertical distribution of soil Ninorg on root distribution and capacity for depletion of soil Ninorg was much less than the effect of inherent differences between species. Thus, knowledge about differences in root growth between species should be used when designing crop rotations with high N use efficiency
Origin of the wide-angle hot H2 in DG Tauri: New insight from SINFONI spectro-imaging
We wish to test the origins proposed for the extended hot H2 at 2000K around
the atomic jet from the T Tauri star DGTau, in order to constrain the
wide-angle wind structure and the possible presence of an MHD disk wind. We
present flux calibrated IFS observations in H2 1-0 S(1) obtained with
SINFONI/VLT. Thanks to spatial deconvolution by the PSF and to accurate
correction for uneven slit illumination, we performed a thorough analysis and
modeled the morphology, kinematics, and surface brightness. We also compared
our results with studies in [FeII], [OI], and FUV-pumped H2. The
limb-brightened H2 emission in the blue lobe is strikingly similar to
FUV-pumped H2 imaged 6yr later, confirming that they trace the same hot gas and
setting an upper limit of 12km/s on any expansion proper motion. The wide-angle
H2 rims are at lower blueshifts than probed by narrow long-slit spectra. We
confirm that they extend to larger angle and to lower speed the onion-like
velocity structure observed in optical atomic lines. The latter is shown to be
steady over more/equal than 4yr but undetected in [FeII] by SINFONI, probably
due to strong iron depletion. The H2 rim thickness less/equal than 14AU rules
out excitation by C-shocks, and J-shock speeds are constrained to 10km/s. We
find that explaining the H2 wide-angle emission with a shocked layer requires
either a recent outburst (15yr) into a pre-existing ambient outflow or an
excessive wind mass flux. A slow photoevaporative wind from the dense
irradiated disk surface and an MHD disk wind heated by ambipolar diffusion seem
to be more promising and need to be modeled in more detail
Magnetic Moment Formation in Quantum Point Contacts
We study the formation of local magnetic moments in quantum point contacts.
Using a Hubbard-like model to describe point contacts formed in a two
dimensional system, we calculate the magnetic moment using the unrestricted
Hartree approximation. We analyze different type of potentials to define the
point contact, for a simple square potential we calculate a phase diagram in
the parameter space (Coulomb repulsion - gate voltage). We also present an
analytical calculation of the susceptibility to give explicit conditions for
the occurrence of a local moment, we present a simple scaling argument to
analyze how the stability of the magnetic moment depends on the point contact
dimensions.Comment: 7 pages, 2 figure
- …
