1,267 research outputs found
Quantum complementarity of microcavity polaritons
We present an experiment that probes polariton quantum correlations by
exploiting quantum complementarity. Specifically, we find that polaritons in
two distinct idler-modes interfere if and only if they share the same
signal-mode so that "which-way" information cannot be gathered. The
experimental results prove the existence of polariton pair correlations that
store the "which-way" information. This interpretation is confirmed by a
theoretical analysis of the measured interference visibility in terms of
quantum Langevin equations
Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells
Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton-biexciton transition. It is found to be comparable to that of the exciton transition, indicating that the deformation potential interactions for the exciton and the exciton-biexciton transitions are comparable
Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime
Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a root 2 larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime.Peer reviewe
Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data
We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry
Spin recovery in the 25nm gate length InGaAs field effect transistore
We augmented an ensemble Monte-Carlo semiconductor device simulator [3] to incorporate electron spin degrees of freedom using a Bloch equation model to investigate the feasibility of spintronic devices. Results are presented for the steady state polarization and polarization decay due to scattering and spin orbit coupling for a III-V MOSFET device as a function of gate voltages, injection polarization and strain
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
-meson in nuclear matter
The -nucleon (N) interactions are deduced from the heavy baryon
chiral perturbation theory up to the next-to-leading-order terms. Combining the
relativistic mean-field theory for nucleon system, we have studied the
in-medium properties of -meson. We find that all the elastic scattering
N interactions come from the next-to-leading-order terms. The N
sigma term is found to be about 280130 MeV. The off-shell terms are also
important to the in-medium properties of -meson. On application of the
latest determination of the N scattering length, the ratio of
-meson effective mass to its vacuum value is near , while
the optical potential is about MeV, at the normal nuclear density.Comment: 8 pages, 3 figures, to appear in PRC, many modification
Microcavity controlled coupling of excitonic qubits
Controlled non-local energy and coherence transfer enables light harvesting
in photosynthesis and non-local logical operations in quantum computing. The
most relevant mechanism of coherent coupling of distant qubits is coupling via
the electromagnetic field. Here, we demonstrate the controlled coherent
coupling of spatially separated excitonic qubits via the photon mode of a solid
state microresonator. This is revealed by two-dimensional spectroscopy of the
sample's coherent response, a sensitive and selective probe of the coherent
coupling. The experimental results are quantitatively described by a rigorous
theory of the cavity mediated coupling within a cluster of quantum dots
excitons. Having demonstrated this mechanism, it can be used in extended
coupling channels - sculptured, for instance, in photonic crystal cavities - to
enable a long-range, non-local wiring up of individual emitters in solids
High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1.
Polybromo-1 (PBRM1) is an important tumor suppressor in kidney cancer. It contains six tandem bromodomains (BDs), which are specialized structures that recognize acetyl-lysine residues. While BD2 has been found to bind acetylated histone H3 lysine 14 (H3K14ac), it is not known whether other BDs collaborate with BD2 to generate strong binding to H3K14ac, and the importance of H3K14ac recognition for the molecular and tumor suppressor function of PBRM1 is also unknown. We discovered that full-length PBRM1, but not its individual BDs, strongly binds H3K14ac. BDs 2, 4, and 5 were found to collaborate to facilitate strong binding to H3K14ac. Quantitative measurement of the interactions between purified BD proteins and H3K14ac or nonacetylated peptides confirmed the tight and specific association of the former. Interestingly, while the structural integrity of BD4 was found to be required for H3K14ac recognition, the conserved acetyl-lysine binding site of BD4 was not. Furthermore, simultaneous point mutations in BDs 2, 4, and 5 prevented recognition of H3K14ac, altered promoter binding and gene expression, and caused PBRM1 to relocalize to the cytoplasm. In contrast, tumor-derived point mutations in BD2 alone lowered PBRM1\u27s affinity to H3K14ac and also disrupted promoter binding and gene expression without altering cellular localization. Finally, overexpression of PBRM1 variants containing point mutations in BDs 2, 4, and 5 or BD2 alone failed to suppress tumor growth in a xenograft model. Taken together, our study demonstrates that BDs 2, 4, and 5 of PBRM1 collaborate to generate high affinity to H3K14ac and tether PBRM1 to chromatin. Mutations in BD2 alone weaken these interactions, and this is sufficient to abolish its molecular and tumor suppressor functions
Retarded Casimir-Polder force on an atom near reflecting microstructures
We derive the fully retarded energy shift of a neutral atom in two different
geometries useful for modelling etched microstructures. First we calculate the
energy shift due to a reflecting cylindrical wire, and then we work out the
energy shift due to a semi-infinite reflecting half-plane. We analyze the
results for the wire in various limits of the wire radius and the distance of
the atom from the wire, and obtain simple asymptotic expressions useful for
estimates. For the half-plane we find an exact representation of the
Casimir-Polder interaction in terms of a single, fast converging integral,
which is easy to evaluate numerically.Comment: 12 pages, 8 figure
- …
