579 research outputs found

    Exact solutions of two complementary 1D quantum many-body systems on the half-line

    Get PDF
    We consider two particular 1D quantum many-body systems with local interactions related to the root system CNC_N. Both models describe identical particles moving on the half-line with non-trivial boundary conditions at the origin, and they are in many ways complementary to each other. We discuss the Bethe Ansatz solution for the first model where the interaction potentials are delta-functions, and we find that this provides an exact solution not only in the boson case but even for the generalized model where the particles are distinguishable. In the second model the particles have particular momentum dependent interactions, and we find that it is non-trivial and exactly solvable by Bethe Ansatz only in case the particles are fermions. This latter model has a natural physical interpretation as the non-relativistic limit of the massive Thirring model on the half-line. We establish a duality relation between the bosonic delta-interaction model and the fermionic model with local momentum dependent interactions. We also elaborate on the physical interpretation of these models. In our discussion the Yang-Baxter relations and the Reflection equation play a central role.Comment: 15 pages, a mistake corrected changing one of our conclusion

    Partially gapped fermions in 2D

    Full text link
    We compute mean field phase diagrams of two closely related interacting fermion models in two spatial dimensions (2D). The first is the so-called 2D t-t'-V model describing spinless fermions on a square lattice with local hopping and density-density interactions. The second is the so-called 2D Luttinger model that provides an effective description of the 2D t-t'-V model and in which parts of the fermion degrees of freedom are treated exactly by bosonization. In mean field theory, both models have a charge-density-wave (CDW) instability making them gapped at half-filling. The 2D t-t'-V model has a significant parameter regime away from half-filling where neither the CDW nor the normal state are thermodynamically stable. We show that the 2D Luttinger model allows to obtain more detailed information about this mixed region. In particular, we find in the 2D Luttinger model a partially gapped phase that, as we argue, can be described by an exactly solvable model.Comment: v1: 36 pages, 10 figures, v2: minor corrections; equation references to arXiv:0903.0055 updated

    Anomalies and Schwinger terms in NCG field theory models

    Full text link
    We study the quantization of chiral fermions coupled to generalized Dirac operators arising in NCG Yang-Mills theory. The cocycles describing chiral symmetry breaking are calculated. In particular, we introduce a generalized locality principle for the cocycles. Local cocycles are by definition expressions which can be written as generalized traces of operator commutators. In the case of pseudodifferential operators, these traces lead in fact to integrals of ordinary local de Rham forms. As an application of the general ideas we discuss the case of noncommutative tori. We also develop a gerbe theoretic approach to the chiral anomaly in hamiltonian quantization of NCG field theory.Comment: 30 page

    Elementary Derivation of the Chiral Anomaly

    Get PDF
    An elementary derivation of the chiral gauge anomaly in all even dimensions is given in terms of noncommutative traces of pseudo-differential operators.Comment: Minor errors and misprints corrected, a reference added. AmsTex file, 12 output pages. If you do not have preloaded AmsTex you have to \input amstex.te

    Explicit solution of the (quantum) elliptic Calogero-Sutherland model

    Full text link
    We derive explicit formulas for the eigenfunctions and eigenvalues of the elliptic Calogero-Sutherland model as infinite series, to all orders and for arbitrary particle numbers and coupling parameters. The eigenfunctions obtained provide an elliptic deformation of the Jack polynomials. We prove in certain special cases that these series have a finite radius of convergence in the nome qq of the elliptic functions, including the two particle (= Lam\'e) case for non-integer coupling parameters.Comment: v1: 17 pages. The solution is given as series in q but only to low order. v2: 30 pages. Results significantly extended. v3: 35 pages. Paper completely revised: the results of v1 and v2 are extended to all order

    Generalized local interactions in 1D: solutions of quantum many-body systems describing distinguishable particles

    Get PDF
    As is well-known, there exists a four parameter family of local interactions in 1D. We interpret these parameters as coupling constants of delta-type interactions which include different kinds of momentum dependent terms, and we determine all cases leading to many-body systems of distinguishable particles which are exactly solvable by the coordinate Bethe Ansatz. We find two such families of systems, one with two independent coupling constants deforming the well-known delta interaction model to non-identical particles, and the other with a particular one-parameter combination of the delta- and (so-called) delta-prime interaction. We also find that the model of non-identical particles gives rise to a somewhat unusual solution of the Yang-Baxter relations. For the other model we write down explicit formulas for all eigenfunctions.Comment: 23 pages v2: references adde

    Parametric Representation of Noncommutative Field Theory

    Full text link
    In this paper we investigate the Schwinger parametric representation for the Feynman amplitudes of the recently discovered renormalizable ϕ44\phi^4_4 quantum field theory on the Moyal non commutative R4{\mathbb R^4} space. This representation involves new {\it hyperbolic} polynomials which are the non-commutative analogs of the usual "Kirchoff" or "Symanzik" polynomials of commutative field theory, but contain richer topological information.Comment: 31 pages,10 figure

    Singular factorizations, self-adjoint extensions, and applications to quantum many-body physics

    Full text link
    We study self-adjoint operators defined by factorizing second order differential operators in first order ones. We discuss examples where such factorizations introduce singular interactions into simple quantum mechanical models like the harmonic oscillator or the free particle on the circle. The generalization of these examples to the many-body case yields quantum models of distinguishable and interacting particles in one dimensions which can be solved explicitly and by simple means. Our considerations lead us to a simple method to construct exactly solvable quantum many-body systems of Calogero-Sutherland type.Comment: 17 pages, LaTe

    Instantons and the Ground State of the Massive Schwinger Model

    Full text link
    We study the massive Schwinger model, quantum electrodynamics of massive, Dirac fermions, in 1+1 dimensions; with space compactified to a circle. In the limit that transitions to fermion--anti-fermion pairs can be neglected, we study the full ground state. We focus on the effect of instantons which mediate tunnelling transitions in the induced potential for the dynamical degree of freedom in the gauge field.Comment: 17 pages, plain te

    Light-Front QCD(1+1) Coupled to Adjoint Scalar Matter

    Get PDF
    We consider adjoint scalar matter coupled to QCD(1+1) in light-cone quantization on a finite `interval' with periodic boundary conditions. We work with the gauge group SU(2) which is modified to SU(2)/Z2{\rm{SU(2)/Z_2}} by the non-trivial topology. The model is interesting for various nonperturbative approaches because it is the sector of zero transverse momentum gluons of pure glue QCD(2+1), where the scalar field is the remnant of the transverse gluon component. We use the Hamiltonian formalism in the gauge A+=0\partial_- A^+ = 0. What survives is the dynamical zero mode of A+A^+, which in other theories gives topological structure and degenerate vacua. With a point-splitting regularization designed to preserve symmetry under large gauge transformations, an extra A+A^+ dependent term appears in the current J+J^+. This is reminiscent of an (unwanted) anomaly. In particular, the gauge invariant charge and the similarly regulated P+P^+ no longer commute with the Hamiltonian. We show that nonetheless one can construct physical states of definite momentum which are not {\it invariant} under large gauge transformations but do {\it transform} in a well-defined way. As well, in the physical subspace we recover vanishing {\it expectation values} of the commutators between the gauge invariant charge, momentum and Hamiltonian operators. It is argued that in this theory the vacuum is nonetheless trivial and the spectrum is consistent with the results of others who have treated the large N, SU(N), version of this theory in the continuum limit.Comment: LaTex, 13 pages. Submitted to Physics Letters
    corecore