136 research outputs found
Does codetermination affect the composition of variable versus fixed parts of executive compensation?
Contrary to previous literature we hypothesize that interests of labor may well – like that of shareholders – aim at securing the long-run survival of the firm. Consequently, employee representatives on the supervisory board could well have an interest in increasing incentive-based compensation to avoid excessive risk taking and short-run orientated decisions. We compile unique panel data on executive compensation over the periods 2006 to 2011 for 405 listed companies and use a Hausman-Taylor approach to estimate the effect of codetermination on the compensation design. Finally, codetermination has a significantly positive effect on performance-based components of compensation, which supports our hypothesis
Combinatorial Activation and Repression by Seven Transcription Factors Specify Drosophila Odorant Receptor Expression
A systematic analysis reveals a regulatory network controlling selective odorant receptor expression and neuronal diversity in Drosophila
Positional Cues in the Drosophila Nerve Cord: Semaphorins Pattern the Dorso-Ventral Axis
Positional cues target sensory axons to appropriate volumes of the developing nervous system independently of their synaptic partners
Equity Ownership Strategy in Greenfield Investments : Influences of Host Country Infrastructure and MNE Resources in Emerging Markets
This chapter addresses equity ownership strategy in greenfield investments by multinational enterprises (MNEs) in the emerging markets (EMs). It is one of the few studies to hypothesize and analyze influences of host EM physical infrastructure in relation to investment decisions of MNEs. We use resource dependence theory (RDT) as a theoretical basis and test the moderating effects of firm resources like size and host country investment experience. Moreover, the current study assumes a more nuanced approach to studying equity ownership by analyzing wholly owned subsidiaries versus joint ventures (JVs) and including majority versus minority JVs in the analysis as well. The empirical results based on greenfield investments undertaken by Nordic (Danish, Finnish, Norwegian, and Swedish) MNEs in EMs during 1990–2015 reveals the importance of host country physical infrastructure for high equity ownership strategy. Moreover, host country investment experience moderates the effect of physical infrastructure on equity ownership strategy. Finally, the analysis of a sub-sample of greenfield JVs reveals that determinants of equity ownership strategy differ somewhat between greenfield JV or greenfield wholly owned subsidiaries (WOS).© The Author(s) 2019.fi=vertaisarvioitu|en=peerReviewed
Midline Signalling Systems Direct the Formation of a Neural Map by Dendritic Targeting in the Drosophila Motor System
During embryonic development of the motor system of Drosophila, motorneurons target their dendrites to different regions along the body axis in response to midline guidance cues
Chemical Additives for Corrosion Control in Desalination Plants
The addition of chemical additives has been considered as a standard
operation in water treatment systems. This chapter discusses the chemical
additives used for the control of corrosion in desalination systems. Specifically,
corrosion inhibitors for various metallurgies, biocides, and oxygen scavengers
are covered. The pros and cons of the additive chemicals have been
highlighted. The need to utilize green corrosion inhibitors based on plants and
ionic liquids materials have been emphasized. This class of materials are
environmentally friendly, cheap, and readily available
Functional display of heterotetrameric human protein kinase CK2 on Escherichia coli: a novel tool for drug discovery
Development of an environmental impact assessment and decision support system for seawater desalination plants
Seawater desalination is a rapidly growing coastal-based industry. The combined production capacity of all seawater desalination plants worldwide has increased by 30% over the last two years: from 28 million cubic meters per day in 2007—which is the equivalent of the average discharge of the River Seine at Paris—to more than 36 million cubic meters per day in 2009. Seawater desalination is an energy-intensive process. It furthermore consumes considerable amounts of natural resources in the form of chemicals and materials, and may have negative effects on the marine environment due to the discharges of concentrate waste waters and residual chemicals into the sea. The growing number of desalination plants worldwide and the increasing size of single facilities emphasizes the need for greener desalination technologies and more sustainable desalination projects. Two complementing approaches are the development and implementation of best available technology (BAT) standards and best practice guidelines for environmental impact assessment (EIA) studies. While BAT is a technology-based approach, which favors state of the art technologies that reduce resource consumption and waste emissions, EIA aims at minimizing impacts at a site- and project-specific level through environmental monitoring, evaluation of impacts, and mitigation where necessary. The dissertation contains a comprehensive evaluation and synthesis of the potential environmental impacts of desalination plants, with emphasis on the marine environment and aspects of energy use, followed by the development of strategies for impact mitigation. A concept for BAT for seawater desalination technologies is proposed, in combination with a methodological approach for the EIA of desalination projects. The scope of the EIA studies are outlined, including environmental monitoring, toxicity and hydrodynamic modeling studies, and the usefulness of multi-criteria analysis as a decision support tool for EIAs is explored and used to compare different intake and pretreatment options for seawater reverse osmosis plants.Water ManagementCivil Engineering and Geoscience
Investigations of structure and mechanical properties of magnetron sputtered monolayer and multilayer coatings in the ternary system Si-B-C
In the present work SiC and B4C monolayers as well as SiC/B4C multilayer coatings have been investigated with respect to their composition and mechanical properties. The coatings have been deposited on silicon substrates and polished cemented carbide inserts by non-reactive dual radio frequency (r.f.) magnetron sputtering from stoichiometric, high-purity silicon carbide (99.5%) and boron carbide (99.9%) targets. Amorphous stoichiometric SiC and B4C have been achieved with high hardness of 2950 HV0.01 and 4160 HV0.01 with a residual stress of - 3.4 GPa and - 2.9 GPa, respectively. The number of monolayers in the multilayer system with a constant total layer thickness has been varied in order to investigate the influence of the number of interfaces on film composition and properties. Additionally, the monolayer thickness ratio for a constant modulation period (double layer thickness) was varied. In this multilayer system no notable hardness enhancement could be observed. Despite the absence of the hardness enhancement, the toughness is expected to be enhanced due to stress relaxation and a reduction of crack propagation by crack dissipation along the interfaces. An abrupt interface is considered to be an indispensable requirement. However, the strain fields and the difference of the mechanical properties in the interfacial region are also of importance. © 2006 Elsevier B.V. All rights reserved.</p
- …
