39 research outputs found
Evaluation of the safety and tolerability of rasagiline in the treatment of the early stages of Parkinson’s disease
Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells
Repopulation of decellularized lung scaffolds (DLS) is limited due to alterations in the repertoire and ratios of the residual extracellular matrix (ECM) proteins, characterized by e.g., the retention of type I collagen and loss of glycoproteins. We hypothesized that pre-treatment of decellularized matrices with defined ECM proteins, which match the repertoire of integrin receptors expressed by the cells to be seeded (e.g., embryonic stem cells) can increase the efficacy of the reseeding process. To test this hypothesis, we first determined the integrin receptors profile of mouse embryonic stem cells (mESCs). Mouse ESCs express α3, α5, α6, α9 and β1, but not α1, α2 and α4 integrin subunits, as established by Western blotting and adhesion to laminin and fibronectin, but not to collagens type I and IV. Reseeding of DLS with mESCs was inefficient (6.9 ± 0.5%), but was significantly enhanced (2.3 ± 0.1 fold) by pre-treating the scaffolds with media conditioned by A549 human lung adenocarcinoma cells, which we found to contain ~5 μg/ml laminin. Furthermore, pre-treatment with A549-conditioned media resulted in a significantly more uniform distribution of the seeded mESCs throughout the engineered organ as compared to untreated DLS. Our study may advance whole lung engineering by stressing the importance of matching the integrin receptor repertoire of the seeded cells and the cell binding motifs of DLS
An in-vitro tumour microenvironment model using adhesion to type I collagen reveals Akt-dependent radiation resistance in renal cancer cells
Interferon-γ-induced neuronal differentiation of human umbilical cord blood-derived progenitors
Heterogeneous Mixed-Lineage Differentiation of Mouse Embryonic Stem Cells Induced by Conditioned Media from A549 Cells
Diabetes and radiocontrast media increase endothelin converting enzyme-1 in the kidney
Plasma endothelin-1 levels rise in diabetes and after exposure to contrast media suggesting a role in progressive diabetic and acute radiocontrast nephropathies. Here we studied individual and combined effects of streptozotocin-induced diabetes and contrast media on renal endothelin converting enzyme-1 levels in the rat. In vivo, medullary (but not cortical) endothelin converting enzyme protein gradually increased 4 to 5-fold following the induction of diabetes or after the administration of contrast media but rose 15-fold when diabetic rats were given contrast media. Changes in mRNA expression paralleled those of the protein. Immunohistochemistry confirmed that increased tubular and endothelial cell endothelin converting enzyme-1 were most pronounced in the medulla. In vitro, endothelin-1 levels increased 3-fold following incubation of endothelial cells with media high in glucose or with contrast and 4-fold with their combination. Endothelin converting enzyme-1 protein and mRNA expression changed in a similar pattern while prepro endothelin-1 mRNA increased with each insult but not in an additive way. Our study shows that diabetes and contrast media up-regulate renal medullary endothelin converting enzyme-1 expression and synthesis
