2,833 research outputs found
Underwater optical wireless communications : depth dependent variations in attenuation
Depth variations in the attenuation coefficient for light in the ocean were calculated using a one-parameter model based on the chlorophyll-a concentration Cc and experimentally-determined Gaussian chlorophyll-depth profiles. The depth profiles were related to surface chlorophyll levels for the range 0–4 mg/m2, representing clear, open ocean. The depth where Cc became negligible was calculated to be shallower for places of high surface chlorophyll; 111.5 m for surface chlorophyll 0.8<Cc<2.2 mg/m3 compared with 415.5 m for surface Cc<0.04 mg/m3. Below this depth is the absolute minimum attenuation for underwater ocean communication links, calculated to be 0.0092 m−1 at a wavelength of 430 nm. By combining this with satellite surface-chlorophyll data, it is possible to quantify the attenuation between any two locations in the ocean, with applications for low-noise or secure underwater communications and vertical links from the ocean surface
An effective genetic algorithm for network coding
The network coding problem (NCP), which aims to minimize network coding resources such as nodes and links, is a relatively new application of genetic algorithms (GAs) and hence little work has so far been reported in this area. Most of the existing literature on NCP has concentrated primarily on the static network coding problem (SNCP). There is a common assumption in work to date that a target rate is always achievable at every sink as long as coding is allowed at all nodes. In most real-world networks, such as wireless networks, any link could be disconnected at any time. This implies that every time a change occurs in the network topology, a new target rate must be determined. The SNCP software implementation then has to be re-run to try to optimize the coding based on the new target rate. In contrast, the GA proposed in this paper is designed with the dynamic network coding problem (DNCP) as the major concern. To this end, a more general formulation of the NCP is described. The new NCP model considers not only the minimization of network coding resources but also the maximization of the rate actually achieved at sinks. This is particularly important to the DNCP, where the target rate may become unachievable due to network topology changes. Based on the new NCP model, an effective GA is designed by integrating selected new problem-specific heuristic rules into the evolutionary process in order to better diversify chromosomes. In dynamic environments, the new GA does not need to recalculate target rate and also exhibits some degree of robustness against network topology changes. Comparative experiments on both SNCP and DNCP illustrate the effectiveness of our new model and algorithm
Non-coherent detection for ultraviolet communications with inter-symbol interference
Ultraviolet communication (UVC) serves as a promising supplement to share the responsibility for the overloads in conventional wireless communication systems. One challenge for UVC lies in inter-symbol-interference (ISI), which combined with the ambient noise, contaminates the received signals and thereby deteriorates the communication accuracy. Existing coherent signal detection schemes (e.g. maximum likelihood sequence detection, MLSD) require channel state information (CSI) to compensate the channel ISI effect, thereby falling into either a long overhead and large computational complexity, or poor CSI acquisition that further hinders the detection performance. Non-coherent schemes for UVC, although capable of reducing the complexity, cannot provide high detection accuracy in the face of ISI. In this work, we propose a novel non-coherent paradigm via the exploration of the UV signal features that are insensitive to the ISI. By optimally weighting and combining the extracted features to minimize the bit error rate (BER), the optimally-weighted non-coherent detection (OWNCD) is proposed, which converts the signal detection with ISI into a binary detection framework with a heuristic decision threshold. As such, the proposed OWNCD avoids the complex CSI estimation and guarantees the detection accuracy. Compared to the state-of-the-art MLSD in the cases of static and time-varying CSI, the proposed OWNCD can gain ∼1 dB and 8 dB in signal-to-noise-ratio (SNR) at the 7% overhead FEC limit (BER of 4.5×10 −3 , respectively, and can also reduce the computational complexity by 4 order of magnitud
Epidemic modelling by ripple-spreading network and genetic algorithm
Mathematical analysis and modelling is central to infectious disease epidemiology. This paper, inspired by the natural ripple-spreading phenomenon, proposes a novel ripple-spreading network model for the study of infectious disease transmission. The new epidemic model naturally has good potential for capturing many spatial and temporal features observed in the outbreak of plagues. In particular, using a stochastic ripple-spreading process simulates the effect of random contacts and movements of individuals on the probability of infection well, which is usually a challenging issue in epidemic modeling. Some ripple-spreading related parameters such as threshold and amplifying factor of nodes are ideal to describe the importance of individuals’ physical fitness and immunity. The new model is rich in parameters to incorporate many real factors such as public health service and policies, and it is highly flexible to modifications. A genetic algorithm is used to tune the parameters of the model by referring to historic data of an epidemic. The well-tuned model can then be used for analyzing and forecasting purposes. The effectiveness of the proposed method is illustrated by simulation results
Multi-user indoor optical wireless communication system channel control using a genetic algorithm
A genetic algorithm controlled multispot transmitter is demonstrated that is capable of optimising the received power distribution for randomly aligned single element receivers in multiple fully diffuse optical wireless communications systems with multiple mobile users. Using a genetic algorithm to control the intensity of individual diffusion spots, system deployment environment changes, user movement and user alignment can be compensating for, with negligible impact on the bandwidth and root mean square delay spread. It is shown that the dynamic range, referenced against the peak received power, can be reduced up to 27% for empty environments and up to 26% when the users are moving. Furthermore, the effect of user movement, that can perturb the channel up to 8%, can be reduced to within 5% of the optimised case. Compared to alternative bespoke designs that are capable of mitigating optical wireless channel drawbacks, this method provides the possibility of cost-effectiveness for mass-produced receivers in applications where end-user friendliness and mobility are paramount
Circuit Theory
Contains reports on two research projects.Lincoln Laboratory, Purchase Order DDL-B222U.S. Air Force under Air Force Contract AF19(604)-520
Comparison of channel coding schemes for molecular communications systems
Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an s = 4 LDPC (integer s ≥ 2) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with m = 4, (integer m ≥ 2) is better for a system operating between 10-6 and 10-3 bit error rate (BER) levels. Below these BERs,s = 2 LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, s = 3 LDPC and s = 2 LDPC are the best options respectively
On modelling network coded ARQ-based channels
Network coding (NC) has been an attractive research topic in recent years as a means of offering a throughput improvement, especially in multicast scenarios. The throughput gain is achieved by introducing an algebraic method for combining multiple input streams of packets which are addressing one output port at an intermediate node. We present a practical implementation of network coding in conjunction with error control schemes, namely the Stop-and-Wait (SW) and Selective Repeat (SR) protocols. We propose a modified NC scheme and apply it at an intermediate SW ARQ-based link to reduce ARQ control
signals at each transmission. We further extend this work to investigate the usefulness of NC in the Butterfly multicast network which adopts the SR ARQ protocol as an error control scheme. We validate our throughput analysis using a relatively recent discrete-event simulator, SimEvents®. The results show that the proposed scheme offers a throughput advantage of at least 50% over traditional SW ARQ, and that this is particularly noticeable in the presence of high error rates. In the multicast network, however, simulation results show
that when compared with the traditional scheme, NC-SR ARQ can achieve a throughput gain of between 2% and 96% in a low bandwidth channel and up to 19% in a high bandwidth channel with errors
Relay assisted nanoscale communication in the Terahertz Band
In this letter, we investigate the bit error rate (BER) performance of a cooperative relaying transmission scheme for wireless nanosensor networks in the Terahertz (THz) Band. We consider nanosensor networks comprising several graphene-based devices deployed at the nanoscale. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying modes are studied. We consider a line-of-sight (LOS) channel model in the THz band which takes into account both spreading loss and molecular absorption loss. Given the high path loss and level of noise from significant random fluctuations through the THz channel, relay assisted schemes offer advantages in terms of significant performance improvements. To quantify the likely benefits, we derive the predicted bit error rate (BER) of the proposed scheme. We conduct a simulation of the proposed relay schemes based on the THz LOS channel model utilizing a Monte-Carlo method. The results obtained show that a performance improvement of 2.2 dB for AF and of 5 dB for DF is achievable at a target bit error rate (BER) of 10-5
Flexible quality of service model for wireless body area sensor networks
Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency (RF) ultra-wideband (UWB) technology has developed substantially for physiological signal monitoring due to its advantages such as low power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this letter, we provide a flexible quality of service (QoS) model for ad-hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad-hoc network model can balance information packet collisions and power consumption.
Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems
- …
