1,228 research outputs found

    Finite-size effects on the Hamiltonian dynamics of the XY-model

    Full text link
    The dynamical properties of the finite-size magnetization M in the critical region T<T_{KTB} of the planar rotor model on a L x L square lattice are analyzed by means of microcanonical simulations . The behavior of the q=0 structure factor at high frequencies is consistent with field-theoretical results, but new additional features occur at lower frequencies. The motion of M determines a region of spectral lines and the presence of a central peak, which we attribute to phase diffusion. Near T_{KTB} the diffusion constant scales with system size as D ~ L^{-1.6(3)}.Comment: To be published in Europhysics Letter

    Emergence of a non trivial fluctuating phase in the XY model on regular networks

    Full text link
    We study an XY-rotor model on regular one dimensional lattices by varying the number of neighbours. The parameter 2γ12\ge\gamma\ge1 is defined. γ=2\gamma=2 corresponds to mean field and γ=1\gamma=1 to nearest neighbours coupling. We find that for γ<1.5\gamma<1.5 the system does not exhibit a phase transition, while for γ>1.5\gamma > 1.5 the mean field second order transition is recovered. For the critical value γ=γc=1.5\gamma=\gamma_c=1.5, the systems can be in a non trivial fluctuating phase for whichthe magnetisation shows important fluctuations in a given temperature range, implying an infinite susceptibility. For all values of γ\gamma the magnetisation is computed analytically in the low temperatures range and the magnetised versus non-magnetised state which depends on the value of γ\gamma is recovered, confirming the critical value γc=1.5\gamma_{c}=1.5

    A practical algorithmic approach to mature aggressive B cell lymphoma diagnosis in the double/triple hit era. Selecting cases, matching clinical benefit. A position paper from the Italian Group of Haematopathology (G.I.E.)

    Get PDF
    An accurate diagnosis of clinically distinct subgroups of aggressive mature B cell lymphomas is crucial for the choice of proper treatment. Presently, precise recognition of these disorders relies on the combination of morphological, immunophenotypical, and cytogenetic/molecular features. The diagnostic workup in such situations implies the application of costly and time-consuming analyses, which are not always required, since an intensified treatment option is reasonably reserved to fit patients. The Italian Group of Haematopathology proposes herein a practical algorithm for the diagnosis of aggressive mature B cell lymphomas based on a stepwise approach, aimed to select cases deserving molecular analysis, in order to optimize time and resources still assuring the optimal management for any patient

    Phase Ordering Dynamics of ϕ4\phi^4 Theory with Hamiltonian Equations of Motion

    Full text link
    Phase ordering dynamics of the (2+1)- and (3+1)-dimensional ϕ4\phi^4 theory with Hamiltonian equations of motion is investigated numerically. Dynamic scaling is confirmed. The dynamic exponent zz is different from that of the Ising model with dynamics of model A, while the exponent λ\lambda is the same.Comment: to appear in Int. J. Mod. Phys.

    Offsprings of a point vortex

    Full text link
    The distribution engendered by successive splitting of one point vortex are considered. The process of splitting a vortex in three using a reverse three-point vortex collapse course is analysed in great details and shown to be dissipative. A simple process of successive splitting is then defined and the resulting vorticity distribution and vortex populations are analysed

    Targeted mixing in an array of alternating vortices

    Full text link
    Transport and mixing properties of passive particles advected by an array of vortices are investigated. Starting from the integrable case, it is shown that a special class of perturbations allows one to preserve separatrices which act as effective transport barriers, while triggering chaotic advection. In this setting, mixing within the two dynamical barriers is enhanced while long range transport is prevented. A numerical analysis of mixing properties depending on parameter values is performed; regions for which optimal mixing is achieved are proposed. Robustness of the targeted mixing properties regarding errors in the applied perturbation are considered, as well as slip/no-slip boundary conditions for the flow

    Linear theory and violent relaxation in long-range systems: a test case

    Full text link
    In this article, several aspects of the dynamics of a toy model for longrange Hamiltonian systems are tackled focusing on linearly unstable unmagnetized (i.e. force-free) cold equilibria states of the Hamiltonian Mean Field (HMF). For special cases, exact finite-N linear growth rates have been exhibited, including, in some spatially inhomogeneous case, finite-N corrections. A random matrix approach is then proposed to estimate the finite-N growth rate for some random initial states. Within the continuous, NN \rightarrow \infty, approach, the growth rates are finally derived without restricting to spatially homogeneous cases. All the numerical simulations show a very good agreement with the different theoretical predictions. Then, these linear results are used to discuss the large-time nonlinear evolution. A simple criterion is proposed to measure the ability of the system to undergo a violent relaxation that transports it in the vicinity of the equilibrium state within some linear e-folding times
    corecore