2,606 research outputs found

    Towards a unification of HRT and SCOZA. Analysis of exactly solvable mean-spherical and generalized mean-spherical models

    Full text link
    The hierarchical reference theory (HRT) and the self-consistent Ornstein-Zernike approximation (SCOZA) are two liquid state theories that both furnish a largely satisfactory description of the critical region as well as the phase coexistence and equation of state in general. Furthermore, there are a number of similarities that suggest the possibility of a unification of both theories. Earlier in this respect we have studied consistency between the internal energy and free energy routes. As a next step toward this goal we here consider consistency with the compressibility route too, but we restrict explicit evaluations to a model whose exact solution is known showing that a unification works in that case. The model in question is the mean spherical model (MSM) which we here extend to a generalized MSM (GMSM). For this case, we show that the correct solutions can be recovered from suitable boundary conditions through either of SCOZA or HRT alone as well as by the combined theory. Furthermore, the relation between the HRT-SCOZA equations and those of SCOZA and HRT becomes transparent.Comment: Minimal correction of some typos found during proof reading. Accepted for publication in Phys. Rev.

    Quantifying the role of fire in the Earth system – Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

    Get PDF
    Fire is the primary form of terrestrial ecosystem disturbance on a global scale. It affects the net carbon balance of terrestrial ecosystems by emitting carbon directly and immediately into the atmosphere from biomass burning (the fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (the fire indirect effect). Here, we provide the first quantitative assessment of the impact of fire on the net carbon balance of global terrestrial ecosystems during the 20th century, and investigate the roles of fire's direct and indirect effects. This is done by quantifying the difference between the 20th century fire-on and fire-off simulations with the NCAR Community Land Model CLM4.5 (prescribed vegetation cover and uncoupled from the atmospheric model) as a model platform. Results show that fire decreases the net carbon gain of global terrestrial ecosystems by 1.0 Pg C yr<sup>−1</sup> averaged across the 20th century, as a result of the fire direct effect (1.9 Pg C yr<sup>&minus;1</sup>) partly offset by the indirect effect (−0.9 Pg C yr<sup>&minus;1</sup>). Post-fire regions generally experience decreased carbon gains, which is significant over tropical savannas and some North American and East Asian forests. This decrease is due to the direct effect usually exceeding the indirect effect, while they have similar spatial patterns and opposite sign. The effect of fire on the net carbon balance significantly declines until &sim;1970 with a trend of 8 Tg C yr<sup>−1</sup> due to an increasing indirect effect, and increases subsequently with a trend of 18 Tg C yr<sup>−1</sup> due to an increasing direct effect. These results help constrain the global-scale dynamics of fire and the terrestrial carbon cycle

    Picosecond ionization dynamics in femtosecond filaments at high pressures

    Get PDF
    We investigate the plasma dynamics inside a femtosecond-pulse-induced filament generated in an argon gas for a wide range of pressures up to 60 bar. At higher pressures, we observe ionization immediately following a pulse, with up to a threefold increase in the electron density within 30 ps after the filamentary propagation of a femtosecond pulse. Our study suggests that this picosecond evolution can be attributed to collisional ionization including Penning and associative ionizations and electron-impact ionization of excited atoms generated during the pulse. The dominance of excited atoms over ionized atoms at the end of the pulse also indicates an intrapulse inhibition of avalanche ionization. This delayed ionization dynamics provides evidence for diagnosing atomic and molecular excitation and ionization in intense laser interaction with high-pressure gases

    Dynamics and hysteresis in square lattice artificial spin-ice

    Get PDF
    Dynamical effects under geometrical frustration are considered in a model for artificial spin ice on a square lattice in two dimensions. Each island of the spin ice has a three-component Heisenberg-like dipole moment subject to shape anisotropies that influence its direction. The model has real dynamics, including rotation of the magnetic degrees of freedom, going beyond the Ising-type models of spin ice. The dynamics is studied using a Langevin equation solved via a second order Heun algorithm. Thermodynamic properties such as the specific heat are presented for different couplings. A peak in specific heat is related to a type of melting-like phase transition present in the model. Hysteresis in an applied magnetic field is calculated for model parameters where the system is able to reach thermodynamic equilibrium.Comment: Revised versio

    The concept of correlated density and its application

    Full text link
    The correlated density appears in many physical systems ranging from dense interacting gases up to Fermi liquids which develop a coherent state at low temperatures, the superconductivity. One consequence of the correlated density is the Bernoulli potential in superconductors which compensates forces from dielectric currents. This Bernoulli potential allows to access material parameters. Though within the surface potential these contributions are largely canceled, the bulk measurements with NMR can access this potential. Recent experiments are explained and new ones suggested. The underlying quantum statistical theory in nonequilibrium is the nonlocal kinetic theory developed earlier.Comment: 14 pages, CMT30 proceeding

    Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude northern hemisphere. Part I: Uncoupled DGVMs

    Get PDF
    PublishedJournal ArticleLeaf Area Index (LAI) represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data over the period 1986-2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees. © 2013 by the authors.The corresponding author also thanks the CONACYT-CECTI and the University of Exeter for their funding during the PhD studies. The National Center for Atmospheric Research is sponsored by the National Science Foundation

    Design and Implementation of a State-Driven Operating System for Highly Reconfigurable Sensor Networks

    Get PDF
    Due to the low-cost and low-power requirement in an individual sensor node, the available computing resources turn out to be very limited like small memory footprint and irreplaceable battery power. Sensed data fusion might be needed before being transmitted as a tradeoff between procession and transmission in consideration of saving power consumption. Even worse, the application program needs to be complicated enough to be self-organizing and dynamically reconfigurable because changes in an operating environment continue even after deployment. State-driven operating system platform offers numerous benefits in this challenging situation. It provides a powerful way to accommodate complex reactive systems like diverse wireless sensor network applications. The memory usage can be bounded within a state transition table. The complicated issues like concurrency control and asynchronous event handling capabilities can be easily achieved in a well-defined behavior of state transition diagram. In this paper, we present an efficient and effective design of the state-driven operating system for wireless sensor nodes. We describe that the new platform can operate in an extremely resource constrained situation while providing the desired concurrency, reactivity, and reconfigurability. We also compare the executing results after comparing some benchmark test results with those on TinyOS

    Beable trajectories for revealing quantum control mechanisms

    Get PDF
    The dynamics induced while controlling quantum systems by optimally shaped laser pulses have often been difficult to understand in detail. A method is presented for quantifying the importance of specific sequences of quantum transitions involved in the control process. The method is based on a ``beable'' formulation of quantum mechanics due to John Bell that rigorously maps the quantum evolution onto an ensemble of stochastic trajectories over a classical state space. Detailed mechanism identification is illustrated with a model 7-level system. A general procedure is presented to extract mechanism information directly from closed-loop control experiments. Application to simulated experimental data for the model system proves robust with up to 25% noise.Comment: Latex, 20 pages, 13 figure
    corecore