2,606 research outputs found
Towards a unification of HRT and SCOZA. Analysis of exactly solvable mean-spherical and generalized mean-spherical models
The hierarchical reference theory (HRT) and the self-consistent
Ornstein-Zernike approximation (SCOZA) are two liquid state theories that both
furnish a largely satisfactory description of the critical region as well as
the phase coexistence and equation of state in general. Furthermore, there are
a number of similarities that suggest the possibility of a unification of both
theories. Earlier in this respect we have studied consistency between the
internal energy and free energy routes. As a next step toward this goal we here
consider consistency with the compressibility route too, but we restrict
explicit evaluations to a model whose exact solution is known showing that a
unification works in that case. The model in question is the mean spherical
model (MSM) which we here extend to a generalized MSM (GMSM). For this case, we
show that the correct solutions can be recovered from suitable boundary
conditions through either of SCOZA or HRT alone as well as by the combined
theory. Furthermore, the relation between the HRT-SCOZA equations and those of
SCOZA and HRT becomes transparent.Comment: Minimal correction of some typos found during proof reading. Accepted
for publication in Phys. Rev.
Recommended from our members
Creativity Support to Improve Health-and-Safety in Manu-facturing Plants: Demonstrating Everyday Creativity
This paper reports the development and deployment of digi-tal support for human creativity in a domain outside of the creative industries -- health-and-safety management in man-ufacturing plants. It reports applied research to extend a risk detection and resolution process at a world-class manufac-turing plant that produces tractors with creativity techniques and new digital support for the plant employees to use these techniques effectively as part of the risk detection and reso-lution process. The development of the digital support was constrained by the plant's processes, resources and manu-facturing culture, and the new digital support reported in this paper was designed for quick use across the plant with minimum training or management overhead. The paper reports the development, implementation and early evalua-tion of the creativity techniques and digital support in the plant as a demonstrator for the wider application of creativi-ty techniques and digital support tools
Quantifying the role of fire in the Earth system – Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century
Fire is the primary form of terrestrial ecosystem disturbance on a global
scale. It affects the net carbon balance of terrestrial ecosystems by
emitting carbon directly and immediately into the atmosphere from biomass
burning (the fire direct effect), and by changing net ecosystem productivity
and land-use carbon loss in post-fire regions due to biomass burning and
fire-induced vegetation mortality (the fire indirect effect). Here, we
provide the first quantitative assessment of the impact of fire on the net
carbon balance of global terrestrial ecosystems during the 20th century, and
investigate the roles of fire's direct and indirect effects. This is done by
quantifying the difference between the 20th century fire-on and fire-off
simulations with the NCAR Community Land Model CLM4.5 (prescribed vegetation
cover and uncoupled from the atmospheric model) as a model platform. Results
show that fire decreases the net carbon gain of global terrestrial ecosystems
by 1.0 Pg C yr<sup>−1</sup> averaged across the 20th century, as a result of the
fire direct effect (1.9 Pg C yr<sup>−1</sup>) partly offset by the indirect
effect (−0.9 Pg C yr<sup>−1</sup>). Post-fire regions generally experience
decreased carbon gains, which is significant over tropical savannas and some
North American and East Asian forests. This decrease is due to the direct
effect usually exceeding the indirect effect, while they have similar spatial
patterns and opposite sign. The effect of fire on the net carbon balance
significantly declines until ∼1970 with a trend of 8 Tg C yr<sup>−1</sup>
due to an increasing indirect effect, and increases subsequently with a trend
of 18 Tg C yr<sup>−1</sup> due to an increasing direct effect. These results help
constrain the global-scale dynamics of fire and the terrestrial carbon cycle
Picosecond ionization dynamics in femtosecond filaments at high pressures
We investigate the plasma dynamics inside a femtosecond-pulse-induced filament generated in an argon gas for a wide range of pressures up to 60 bar. At higher pressures, we observe ionization immediately following a pulse, with up to a threefold increase in the electron density within 30 ps after the filamentary propagation of a femtosecond pulse. Our study suggests that this picosecond evolution can be attributed to collisional ionization including Penning and associative ionizations and electron-impact ionization of excited atoms generated during the pulse. The dominance of excited atoms over ionized atoms at the end of the pulse also indicates an intrapulse inhibition of avalanche ionization. This delayed ionization dynamics provides evidence for diagnosing atomic and molecular excitation and ionization in intense laser interaction with high-pressure gases
Dynamics and hysteresis in square lattice artificial spin-ice
Dynamical effects under geometrical frustration are considered in a model for
artificial spin ice on a square lattice in two dimensions. Each island of the
spin ice has a three-component Heisenberg-like dipole moment subject to shape
anisotropies that influence its direction. The model has real dynamics,
including rotation of the magnetic degrees of freedom, going beyond the
Ising-type models of spin ice. The dynamics is studied using a Langevin
equation solved via a second order Heun algorithm. Thermodynamic properties
such as the specific heat are presented for different couplings. A peak in
specific heat is related to a type of melting-like phase transition present in
the model. Hysteresis in an applied magnetic field is calculated for model
parameters where the system is able to reach thermodynamic equilibrium.Comment: Revised versio
The concept of correlated density and its application
The correlated density appears in many physical systems ranging from dense
interacting gases up to Fermi liquids which develop a coherent state at low
temperatures, the superconductivity. One consequence of the correlated density
is the Bernoulli potential in superconductors which compensates forces from
dielectric currents. This Bernoulli potential allows to access material
parameters. Though within the surface potential these contributions are largely
canceled, the bulk measurements with NMR can access this potential. Recent
experiments are explained and new ones suggested. The underlying quantum
statistical theory in nonequilibrium is the nonlocal kinetic theory developed
earlier.Comment: 14 pages, CMT30 proceeding
Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude northern hemisphere. Part I: Uncoupled DGVMs
PublishedJournal ArticleLeaf Area Index (LAI) represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data over the period 1986-2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees. © 2013 by the authors.The corresponding author also thanks the CONACYT-CECTI and the University of Exeter for their funding during the PhD studies. The National Center for Atmospheric Research is sponsored by the National Science Foundation
The relationship of readiness factors to Jan. first grade reading achievement
Thesis (Ed.M.)--Boston Universit
Design and Implementation of a State-Driven Operating System for Highly Reconfigurable Sensor Networks
Due to the low-cost and low-power requirement in an individual sensor node, the available computing resources turn out to be very limited like small memory footprint and irreplaceable battery power. Sensed data fusion might be needed before being transmitted as a tradeoff between procession and transmission in consideration of saving power consumption. Even worse, the application program needs to be complicated enough to be self-organizing and dynamically reconfigurable because changes in an operating environment continue even after deployment. State-driven operating system platform offers numerous benefits in this challenging situation. It provides a powerful way to accommodate complex reactive systems like diverse wireless sensor network applications. The memory usage can be bounded within a state transition table. The complicated issues like concurrency control and asynchronous event handling capabilities can be easily achieved in a well-defined behavior of state transition diagram. In this paper, we present an efficient and effective design of the state-driven operating system for wireless sensor nodes. We describe that the new platform can operate in an extremely resource constrained situation while providing the desired concurrency, reactivity, and reconfigurability. We also compare the executing results after comparing some benchmark test results with those on TinyOS
Beable trajectories for revealing quantum control mechanisms
The dynamics induced while controlling quantum systems by optimally shaped
laser pulses have often been difficult to understand in detail. A method is
presented for quantifying the importance of specific sequences of quantum
transitions involved in the control process. The method is based on a
``beable'' formulation of quantum mechanics due to John Bell that rigorously
maps the quantum evolution onto an ensemble of stochastic trajectories over a
classical state space. Detailed mechanism identification is illustrated with a
model 7-level system. A general procedure is presented to extract mechanism
information directly from closed-loop control experiments. Application to
simulated experimental data for the model system proves robust with up to 25%
noise.Comment: Latex, 20 pages, 13 figure
- …
