1,051 research outputs found

    On phase behavior and dynamical signatures of charged colloidal platelets

    Full text link
    We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of thin charged colloidal discs, by means of Monte-Carlo simulations and dynamical characterization of the structures found. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets, obtained within the non-linear Poisson-Boltzmann formalism, not only rationalizes the generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. In addition, we find evidences of a strong slowing down of the dynamics upon increasing density.Comment: 6 pages, 6 Figure

    Direct Inhibition of T-Cell Responses by the Cryptococcus Capsular Polysaccharide Glucuronoxylomannan

    Get PDF
    The major virulence factor of the pathogenic fungi Cryptococcus neoformans and C. gattii is the capsule. Glucuronoxylomannan (GXM), the major component of the capsule, is a high-molecular-weight polysaccharide that is shed during cryptococcosis and can persist in patients after successful antifungal therapy. Due to the importance of T cells in the anticryptococcal response, we studied the effect of GXM on the ability of dendritic cells (DCs) to initiate a T-cell response. GXM inhibited the activation of cryptococcal mannoprotein-specific hybridoma T cells and the proliferation of OVA-specific OT-II T cells when murine bone marrow-derived DCs were used as antigen-presenting cells. Inhibition of OT-II T-cell proliferation was observed when either OVA protein or OVA323-339 peptide was used as antigen, indicating GXM did not merely prevent antigen uptake or processing. We found that DCs internalize GXM progressively over time; however, the suppressive effect did not require DCs, as GXM directly inhibited T-cell proliferation induced by anti-CD3 antibody, concanavalin A, or phorbol-12-myristate-13-acetate/ionomycin. Analysis of T-cell viability revealed that the reduced proliferation in the presence of GXM was not the result of increased cell death. GXM isolated from each of the four major cryptococcal serotypes inhibited the proliferation of human peripheral blood mononuclear cells stimulated with tetanus toxoid. Thus, we have defined a new mechanism by which GXM can impart virulence: direct inhibition of T-cell proliferation. In patients with cryptococcosis, this could impair optimal cell-mediated immune responses, thereby contributing to the persistence of cryptococcal infections. SynopsisInfections due to the pathogenic yeast Cryptococcus are a significant cause of morbidity and mortality in persons with impaired T-cell functions, particularly those with AIDS. The major virulence factor of Cryptococcus is its capsule, which is composed primarily of the polysaccharide glucuronoxylomannan (GXM). The capsule not only surrounds the organism but also is shed during cryptococcosis. GXM is taken up by macrophages in vitro and in vivo; however, little is known about the interaction between GXM and dendritic cells, which are the most potent cells capable of activating T cells. Because of the importance of T cells in the anticryptococcal response, the authors investigated the effect of GXM on the ability of dendritic cells to initiate a T-cell response. They found the polysaccharide was internalized by dendritic cells and inhibited antigen-specific T-cell responses. Furthermore, GXM had a direct, inhibitory effect on T-cell proliferation, independent of the effect on dendritic cells. These findings may help explain the persistence of cryptococcal infections and suggest that GXM could be therapeutic in situations where suppression of T-cell responses is desired.National Institutes of Health (R01 AI25780, R01 AI066087, R01 AI37532

    Mean first-passage time of surface-mediated diffusion in spherical domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: to appear in J. Stat. Phy

    Kinetics of active surface-mediated diffusion in spherically symmetric domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. We generalize the results of [J. Stat. Phys. {\bf 142}, 657 (2011)] and consider a biased diffusion in a general annulus with an arbitrary number of regularly spaced targets on a partially reflecting surface. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: Published online in J. Stat. Phy

    Chord distribution functions of three-dimensional random media: Approximate first-passage times of Gaussian processes

    Get PDF
    The main result of this paper is a semi-analytic approximation for the chord distribution functions of three-dimensional models of microstructure derived from Gaussian random fields. In the simplest case the chord functions are equivalent to a standard first-passage time problem, i.e., the probability density governing the time taken by a Gaussian random process to first exceed a threshold. We obtain an approximation based on the assumption that successive chords are independent. The result is a generalization of the independent interval approximation recently used to determine the exponent of persistence time decay in coarsening. The approximation is easily extended to more general models based on the intersection and union sets of models generated from the iso-surfaces of random fields. The chord distribution functions play an important role in the characterization of random composite and porous materials. Our results are compared with experimental data obtained from a three-dimensional image of a porous Fontainebleau sandstone and a two-dimensional image of a tungsten-silver composite alloy.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.

    Spontaneously formed porous and composite materials

    Get PDF
    In recent years, a number of routes to porous materials have been developed which do not involve the use of pre-formed templates or structure-directing agents. These routes are usually spontaneous, meaning they are thermodynamically downhill. Kinetic control, deriving from slow diffusion of certain species in the solid state, allows metastable porous morphologies rather than dense materials to be obtained. While the porous structures so formed are random, the average architectural features can be well-defined, and the porosity is usually highly interconnected. The routes are applicable to a broad range of functional inorganic materials. Consequently, the porous architectures have uses in energy transduction and storage, chemical sensing, catalysis, and photoelectrochemistry. This is in addition to more straightforward uses deriving from the pore structure, such as in filtration, as a structural material, or as a cell-growth scaffold. In this feature article, some of the methods for the creation of porous materials are described, including shape-conserving routes that lead to hierarchical macro/mesoporous architectures. In some of the preparations, the resulting mesopores are aligned locally with certain crystallographic directions. The coupling between morphology and crystallography provides a macroscopic handle on nanoscale structure. Extension of these routes to create biphasic composite materials are also described

    Diffusion on random site percolation clusters. Theory and NMR microscopy experiments with model objects

    Full text link
    Quasi two-dimensional random site percolation model objects were fabricate based on computer generated templates. Samples consisting of two compartments, a reservoir of H2_2O gel attached to a percolation model object which was initially filled with D2_2O, were examined with NMR (nuclear magnetic resonance) microscopy for rendering proton spin density maps. The propagating proton/deuteron inter-diffusion profiles were recorded and evaluated with respect to anomalous diffusion parameters. The deviation of the concentration profiles from those expected for unobstructed diffusion directly reflects the anomaly of the propagator for diffusion on a percolation cluster. The fractal dimension of the random walk, dwd_w, evaluated from the diffusion measurements on the one hand and the fractal dimension, dfd_f, deduced from the spin density map of the percolation object on the other permits one to experimentally compare dynamical and static exponents. Approximate calculations of the propagator are given on the basis of the fractional diffusion equation. Furthermore, the ordinary diffusion equation was solved numerically for the corresponding initial and boundary conditions for comparison. The anomalous diffusion constant was evaluated and is compared to the Brownian case. Some ad hoc correction of the propagator is shown to pay tribute to the finiteness of the system. In this way, anomalous solutions of the fractional diffusion equation could experimentally be verified for the first time.Comment: REVTeX, 12 figures in GIF forma

    Transfer RNA-derived small RNAs in the cancer transcriptome

    Get PDF
    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript

    Irreversible Aging Dynamics and Generic Phase Behavior of Aqueous Suspensions of Laponite

    Full text link
    In this work we study the aging behavior of aqueous suspension of Laponite having 2.8 weight % concentration using rheological tools. At various salt concentration all the samples demonstrate orientational order when observed using crossed polarizers. In rheological experiments we observe inherent irreversibility in the aging dynamics which forces the system not to rejuvenate to the same state in the shear melting experiment carried out at a later date since preparation. The extensive rheological experiments carried out as a function of time elapsed since preparation demonstrate the self similar trend in the aging behavior irrespective of the concentration of salt. We observe that the exploration of the low energy states as a function of aging time is only kinetically affected by the presence of salt. We estimate that the energy barrier to attain the low energy states decreases linearly with increase in the concentration of salt. The observed superposition of all the elapsed time and the salt concentration dependent data suggests that the aging that occurs in low salt concentration systems over a very long period is qualitatively similar to the aging behavior observed in systems with high salt concentration over a shorter period.Comment: 27 pages, 8 figures. Langmuir, in pres
    corecore