1,336 research outputs found
A study of fluid dynamics of gaseous nuclear rockets Quarterly progress report, 1 Jul. - 30 Sep. 1968
Predicting flow patterns of vortex tubes at high Reynolds number
A study of fluid dynamics of gaseous nuclear rockets Quarterly progress report, period ending Jun. 30, 1968
Bibliography on vortex flows for fluid dynamic containment of gaseous nuclear rocket fue
Investigation of rotor blade tip-vortex aerodynamics
Several aspects of the aerodynamics of rotor blade tip vortices are examined. Two particular categories are dealt with; (1) dynamic loads on a blade passing close to or intersecting a trailing vortex, and (2) the response of the trailing vortex core to changes in the flow. Results for both categories are in reasonable agreement with existing data, although lower pressure gradients were obtained than anticipated for category one. A correlation between trailing edge sweep angle at the tip and vortex core size was noted for category two
Estimates of the low-level wind shear and turbulence in the vicinity of Kennedy International Airport on 24 June 1975
A study was conducted to estimate the type of wind and turbulence distributions which may have existed at the time of the crash of Eastern Airlines Flight 66 while attempting to land. A number of different wind and turbulence profiles are predicted for the site and date of the crash. The morning and mid-afternoon predictions are in reasonably good agreement with magnitude and direction as reported by the weather observer. Although precise predictions cannot be made during the passage of the thunderstorm which coincides with the time of the accident, a number of different profiles which might exist under or in the vicinity of a thunderstorm are presented. The profile that is most probable predicts the mean headwind shear over 100 m (300 feet) altitude change and the average fluctuations about the mean headwind distribution. This combination of means and fluctuations leads to a reasonable probability that the instantaneous headwind shear would equal the maximum value reported in the flight recorder data
Wind shear and turbulence around airports
A two part study was conducted to determine the feasibility of predicting the conditions under which wind/turbulence environments hazardous to aviation operations exist. The computer model used to solve the velocity temperature, and turbulence distributions in the atmospheric boundary layer is described, and the results of a parameteric analysis to determine the expected range of wind shear and turbulence to be encountered in the vicinity of airports are given. The second part describes the delineation of an ensemble of aircraft accidents in which low level wind shear and/or turbulence appeared to be causative factors. This set of accidents, encompassing a wide range of meteorological conditions, should prove useful in developing techniques for reconstructing hazardous wind environments for aircraft safety investigation purposes
Model predictions of wind and turbulence profiles associated with an ensemble of aircraft accidents
The feasibility of predicting conditions under which wind/turbulence environments hazardous to aviation operations exist is studied by examining a number of different accidents in detail. A model of turbulent flow in the atmospheric boundary layer is used to reconstruct wind and turbulence profiles which may have existed at low altitudes at the time of the accidents. The predictions are consistent with available flight recorder data, but neither the input boundary conditions nor the flight recorder observations are sufficiently precise for these studies to be interpreted as verification tests of the model predictions
Grand Unification with Three Generations in Free Fermionic String Models
We examine the problem of constructing three generation free fermionic string
models with grand unified gauge groups. We attempt the construction of models, where is a grand unified group realized at level 1. This
structure allows those Higgs representations to appear which are necessary to
break the symmetry down to the standard model gauge group. For , we
find only models with an even number of generations. However, for we
find a number of 3 generation models.Comment: 22 pages, latex. References added to original versio
A Classification of 3-Family Grand Unification in String Theory I. The SO(10) and E_6 Models
We give a classification of 3-family SO(10) and E_6 grand unification in
string theory within the framework of conformal field theory and asymmetric
orbifolds. We argue that the construction of such models in the heterotic
string theory requires certain Z_6 asymmetric orbifolds that include a Z_3
outer-automorphism, the latter yielding a level-3 current algebra for the grand
unification gauge group SO(10) or E_6. We then classify all such Z_6 asymmetric
orbifolds that result in models with a non-abelian hidden sector. All models
classified in this paper have only one adjoint (but no other higher
representation) Higgs field in the grand unified gauge group. In addition, all
of them are completely anomaly free. There are two types of such 3-family
models. The first type consists of the unique SO(10) model with SU(2) X SU(2) X
SU(2) as its hidden sector (which is not asymptotically-free at the string
scale). This SO(10) model has 4 left-handed and 1 right-handed 16s. The second
type is described by a moduli space containing 17 models (distinguished by
their massless spectra). All these models have an SU(2) hidden sector, and 5
left-handed and 2 right-handed families in the grand unified gauge group. One
of these models is the unique E_6 model with an asymptotically-free SU(2)
hidden sector. The others are SO(10) models, 8 of them with an asymptotically
free hidden sector at the string scale.Comment: 35 pages, Revtex 3.0, one eps figure (to appear in Phys. Rev. D
High-Brightness Beams from a Light Source Injector: The Advanced Photon Source Low-Energy Undulator Test Line Linac
The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, including details on technical systems improvements and electron beam measurement techniques, will be discussed. The linac is capable of accelerating beams to over 650 MeV. The nominal FEL beam parameters used are as follows: 217 MeV energy; 0.1-0.2% rms energy spread; 4-8 um normalized rms emittance; 80-120 A peak current from a 0.2-0.7 nC charge at a 2-7 ps FWHM bunch
- …
