773 research outputs found

    The evolution of interdisciplinarity in physics research

    Get PDF
    Science, being a social enterprise, is subject to fragmentation into groups that focus on specialized areas or topics. Often new advances occur through cross-fertilization of ideas between sub-fields that otherwise have little overlap as they study dissimilar phenomena using different techniques. Thus to explore the nature and dynamics of scientific progress one needs to consider the large-scale organization and interactions between different subject areas. Here, we study the relationships between the sub-fields of Physics using the Physics and Astronomy Classification Scheme (PACS) codes employed for self-categorization of articles published over the past 25 years (1985-2009). We observe a clear trend towards increasing interactions between the different sub-fields. The network of sub-fields also exhibits core-periphery organization, the nucleus being dominated by Condensed Matter and General Physics. However, over time Interdisciplinary Physics is steadily increasing its share in the network core, reflecting a shift in the overall trend of Physics research.Comment: Published version, 10 pages, 8 figures + Supplementary Informatio

    Navigability is a Robust Property

    Full text link
    The Small World phenomenon has inspired researchers across a number of fields. A breakthrough in its understanding was made by Kleinberg who introduced Rank Based Augmentation (RBA): add to each vertex independently an arc to a random destination selected from a carefully crafted probability distribution. Kleinberg proved that RBA makes many networks navigable, i.e., it allows greedy routing to successfully deliver messages between any two vertices in a polylogarithmic number of steps. We prove that navigability is an inherent property of many random networks, arising without coordination, or even independence assumptions

    Fast matrix computations for pair-wise and column-wise commute times and Katz scores

    Full text link
    We first explore methods for approximating the commute time and Katz score between a pair of nodes. These methods are based on the approach of matrices, moments, and quadrature developed in the numerical linear algebra community. They rely on the Lanczos process and provide upper and lower bounds on an estimate of the pair-wise scores. We also explore methods to approximate the commute times and Katz scores from a node to all other nodes in the graph. Here, our approach for the commute times is based on a variation of the conjugate gradient algorithm, and it provides an estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz scores is based on exploiting an empirical localization property of the Katz matrix. We adopt algorithms used for personalized PageRank computing to these Katz scores and theoretically show that this approach is convergent. We evaluate these methods on 17 real world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show that our pair-wise commute time method and column-wise Katz algorithm both have attractive theoretical properties and empirical performance.Comment: 35 pages, journal version of http://dx.doi.org/10.1007/978-3-642-18009-5_13 which has been submitted for publication. Please see http://www.cs.purdue.edu/homes/dgleich/publications/2011/codes/fast-katz/ for supplemental code

    Risk-Averse Matchings over Uncertain Graph Databases

    Full text link
    A large number of applications such as querying sensor networks, and analyzing protein-protein interaction (PPI) networks, rely on mining uncertain graph and hypergraph databases. In this work we study the following problem: given an uncertain, weighted (hyper)graph, how can we efficiently find a (hyper)matching with high expected reward, and low risk? This problem naturally arises in the context of several important applications, such as online dating, kidney exchanges, and team formation. We introduce a novel formulation for finding matchings with maximum expected reward and bounded risk under a general model of uncertain weighted (hyper)graphs that we introduce in this work. Our model generalizes probabilistic models used in prior work, and captures both continuous and discrete probability distributions, thus allowing to handle privacy related applications that inject appropriately distributed noise to (hyper)edge weights. Given that our optimization problem is NP-hard, we turn our attention to designing efficient approximation algorithms. For the case of uncertain weighted graphs, we provide a 13\frac{1}{3}-approximation algorithm, and a 15\frac{1}{5}-approximation algorithm with near optimal run time. For the case of uncertain weighted hypergraphs, we provide a Ω(1k)\Omega(\frac{1}{k})-approximation algorithm, where kk is the rank of the hypergraph (i.e., any hyperedge includes at most kk nodes), that runs in almost (modulo log factors) linear time. We complement our theoretical results by testing our approximation algorithms on a wide variety of synthetic experiments, where we observe in a controlled setting interesting findings on the trade-off between reward, and risk. We also provide an application of our formulation for providing recommendations of teams that are likely to collaborate, and have high impact.Comment: 25 page

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    World citation and collaboration networks: uncovering the role of geography in science

    Get PDF
    Modern information and communication technologies, especially the Internet, have diminished the role of spatial distances and territorial boundaries on the access and transmissibility of information. This has enabled scientists for closer collaboration and internationalization. Nevertheless, geography remains an important factor affecting the dynamics of science. Here we present a systematic analysis of citation and collaboration networks between cities and countries, by assigning papers to the geographic locations of their authors' affiliations. The citation flows as well as the collaboration strengths between cities decrease with the distance between them and follow gravity laws. In addition, the total research impact of a country grows linearly with the amount of national funding for research & development. However, the average impact reveals a peculiar threshold effect: the scientific output of a country may reach an impact larger than the world average only if the country invests more than about 100,000 USD per researcher annually.Comment: Published version. 9 pages, 5 figures + Appendix, The world citation and collaboration networks at both city and country level are available at http://becs.aalto.fi/~rajkp/datasets.htm

    Individualization as driving force of clustering phenomena in humans

    Get PDF
    One of the most intriguing dynamics in biological systems is the emergence of clustering, the self-organization into separated agglomerations of individuals. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is clustering of opinions in human populations. The puzzle is particularly pressing if opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing opinion formation models suggest that "monoculture" is unavoidable in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness did not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution of the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct simulation experiments to demonstrate that with this kind of noise, a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure

    Computational fact checking from knowledge networks

    Get PDF
    Traditional fact checking by expert journalists cannot keep up with the enormous volume of information that is now generated online. Computational fact checking may significantly enhance our ability to evaluate the veracity of dubious information. Here we show that the complexities of human fact checking can be approximated quite well by finding the shortest path between concept nodes under properly defined semantic proximity metrics on knowledge graphs. Framed as a network problem this approach is feasible with efficient computational techniques. We evaluate this approach by examining tens of thousands of claims related to history, entertainment, geography, and biographical information using a public knowledge graph extracted from Wikipedia. Statements independently known to be true consistently receive higher support via our method than do false ones. These findings represent a significant step toward scalable computational fact-checking methods that may one day mitigate the spread of harmful misinformation

    Geographic constraints on social network groups

    Get PDF
    Social groups are fundamental building blocks of human societies. While our social interactions have always been constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of this restriction on social group structure. We construct a social network of individuals whose most frequent geographical locations are also known. We also classify the individuals into groups according to a community detection algorithm. We study the variation of geographical span for social groups of varying sizes, and explore the relationship between topological positions and geographic positions of their members. We find that small social groups are geographically very tight, but become much more clumped when the group size exceeds about 30 members. Also, we find no correlation between the topological positions and geographic positions of individuals within network communities. These results suggest that spreading processes face distinct structural and spatial constraints.Comment: 10 pages, 5 figure

    Temporal rainfall trend analysis in different agro-ecological regions of southern Africa

    Get PDF
    Rainfall is a major driver of food production in rainfed smallholder farming systems. This study was conducted to assess linear trends in (i) different daily rainfall amounts (<5, 5–10, 11–20, 21–40 and >40 mm∙day-1), and (ii) monthly and seasonal rainfall amounts. Drought was determined using the rainfall variability index. Daily rainfall data were derived from 18 meteorological stations in southern Africa. Daily rainfall was dominated by <5 mm∙day-1 followed by 5–10 mm∙day -1. Three locations experienced increasing linear trends of <5 mm∙day-1 amounts and two others in sub-humid region had increases in the >40 mm day -1 category. Semi-arid location experienced increasing trends in <5 and 5–10 mm∙day-1 events. A significant linear trend in seasonal rainfall occurred at two locations with decreasing rainfall (1.24 and 3 mm∙season-1). A 3 mm∙season-1 decrease in seasonal rainfall was experienced under semi-arid conditions. There were no apparent linear trends in monthly and seasonal rainfall at 15 of the 18 locations studied. Drought frequencies varied with location and were 50% or higher during the November–March growing season. Rainfall trends were location and agro-ecology specific, but most of the locations studied did not experience significant changes between the 1900s and 2000s
    corecore