2,563 research outputs found
Isomer Dependence in the Assembly and Lability of Silver(I) Trifluoromethanesulfonate Complexes of the Heteroditopic Ligands, 2-, 3-, and 4-[Di(1\u3cem\u3eH\u3c/em\u3e-pyrazolyl)methyl]phenyl(di-\u3cem\u3ep\u3c/em\u3e-tolyl)phosphine
Three isomers of a new heteroditopic ligand that contains a di(1H-pyrazolyl)methyl (−CHpz2) moiety connected to a di(p-tolyl)phosphine group via a para-, meta-, or ortho-phenylene spacer (pL, mL, and oL, respectively) have been synthesized by using a palladium(0)-catalyzed coupling reaction between HP(p-tolyl)2 and the appropriate isomer of (IC6H4)CHpz2. The 1:1 complexes of silver(I) trifluoromethanesulfonate, Ag(OTf), were prepared to examine the nature of ligand coordination and the type of supramolecular isomer (monomeric, cyclic oligomeric, or polymeric) that would be obtained. The single crystal X-ray diffraction studies showed that [Ag(pL)](OTf), 1, and [Ag(mL)](OTf), 2, possessed cyclic dimeric dications, whereas [Ag(oL)](OTf), 3, was a coordination polymer. The polymeric chain in 3 could be disrupted by reaction with triphenylphosphine, and the resulting complex, [Ag(oL)(PPh3)](OTf), 4, possessed a monometallic cation where the ligand was bound to silver in a chelating κ2P,N- coordination mode. The solution structures of 1–4 were probed via a combination of IR, variable-temperature multinuclear (1H, 13C, 31P) NMR spectroscopy, as well as by electron spray ionization (ESI)(+) mass spectrometry. A related complex [Ag(m-IC6H4CHpz2)2](OTf), 5, was also prepared, and its solid-state and solution spectroscopic properties were studied for comparison purposes. These studies suggest that the cyclic structures of 1 and 2 are likely preserved but are dynamic in solution at room temperature. Moreover, both 3 and 4 have dynamic solution structures where 3 is likely extensively dissociated in CH3CN or acetone rather than being polymeric as in the solid state
Kinetic, Spectroscopic, and X-Ray Crystallographic Evidence for the Cooperative Mechanism of the Hydration of Nitriles Catalyzed by a Tetranuclear Ruthenium-μ-oxo-μ-hydroxo Complex
The tetranuclear ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was found to be a highly cooperative catalyst for the nitrile hydration reaction. The cooperative mechanism of the hydration of benzonitrile was established by Hill inhibition kinetics. The treatment of a nitrile substrate with complex 1 led to the catalytically relevant nitrile-coordinated tetraruthenium complex 3. The X-ray structure of the nitrile-coordinated complex 3 showed a considerably “relaxed” tetrameric core structure compared to that of 1. The hydration of para-substituted benzonitriles p-X-C6H4CN with an electron-withdrawing group (X = Cl, Br, CO2H, CF3) exhibited cooperative kinetics, as indicated by the sigmoidal saturation kinetics, while the hydration of nitriles with an electron-donating group (X = OH, OMe, t-Bu, CH3) obeyed Michaelis–Menten saturation kinetics. The formation of a ruthenium hydride species was observed during the hydration of methacrylonitrile, and its monomeric nature was established by using DOSY NMR techniques
Photoinduced Coupling of Acetylenes and Quinone in the Solid State as Preorganized Donor−Acceptor Pairs
Crystalline electron donor−acceptor (EDA) complexes of various diarylacetylenes (DA) and dichlorobenzoquinone (DB) are isolated and structurally characterized by X-ray crystallography. Deliberate excitation of either the DB acceptor at λDB = 355 nm or the 1:2 [DA, 2DB] complex at λCT = 532 nm in the solid state leads to [2 + 2] cycloaddition and identical (isomeric) mixtures of the quinone methide products. Time-resolved (ps) diffuse reflectance spectroscopy identifies the ion-radical pair [DA•+, DB•-] as the reactive intermediate derived by photoinduced electron transfer in both photochemical procedures. The effects of crystal-lattice control on the subsequent ion-radical pair dynamics are discussed in comparison with the same photocouplings of acetylenes and quinone previously carried out in solution
Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroantimonate as a Novel (One-Electron) Oxidant
Triethyloxonium hexachloroantimonate [Et3O+SbCl6-] is a selective oxidant of aromatic donors (ArH), and it allows the facile preparation and isolation of crystalline paramagnetic salts [ArH+•, SbCl6-] for the X-ray structure determination of various aromatic cation radicals. The mechanistic relationship between the Meerwein salt [Et3O+SbCl6-] and the pure Lewis acid oxidant SbCl5 is based on a prior ethyl transfer from oxygen to chlorine within the ion pair
Disproportionation and Structural Changes of Tetraarylethylene Donors upon Successive Oxidation to Cation Radicals and to Dications
The stepwise (one-electron) chemical oxidation of the tetraphenylethylene donor and its substituted analogues (D) can be carried out by electron exchange with aromatic cations or antimony(V) oxidants to selectively afford the cation radical (D+•) initially and then the dication (D2+). The ready interchange of the latter establishes the facile disproportionation (i.e., 2D+• ⇌ D2+ + D) that was originally examined by only transient electrochemical techniques. The successful isolations of the crystalline salts of the tetraanisylethylene cation radical (1+•) as well as the tetraanisylethylene dication (12+) allow X-ray diffraction analysis (for the first time) to quantify the serial changes in the molecular structure upon successive oxidations. Five structural parameters (d, l, θ, φ, and q) are identified as quantitative measures of changes in bond (CαCβ, Cαanisyl) lengths, dihedral (CαCβ)/torsional (anisyl) angles, and quinoidal (anisyl) distortion attendant upon the removal of first one-electron and then another electron from the tetraanisylethylene framework. The linear variation of all five parameters in Chart 3 point to a strongly coupled relaxation of tetraanisylethylene (involving simultaneous changes of d, l, θ, φ, and q) to a severely twisted dication. Most noteworthy is the structure of the cation radical 1+• with d, l, θ, φ, and q values that are exactly one-half those of the dication. The complex molecular changes accompanying the transformation: D → D+• → D2+ bear directly on the donor properties and the disproportionation processes of various tetraarylethylenes
Isolation and X-ray Structures of Labile Benzoic- and Acetic-Acidium Carbocations
New carbocationic salts (via O-protonation of substituted benzoic acids) are prepared for the first time by controlled hydration of the corresponding benzoylium salts and isolated in pure crystalline form. Precise X-ray structural analyses reveal the rather unexpected (electronic) structure of the carboxylic-acidium functionality
Computing the Margin of Victory in Preferential Parliamentary Elections
We show how to use automated computation of election margins to assess the
number of votes that would need to change in order to alter a parliamentary
outcome for single-member preferential electorates. In the context of
increasing automation of Australian electoral processes, and accusations of
deliberate interference in elections in Europe and the USA, this work forms the
basis of a rigorous statistical audit of the parliamentary election outcome.
Our example is the New South Wales Legislative Council election of 2015, but
the same process could be used for any similar parliament for which data was
available, such as the Australian House of Representatives given the proposed
automatic scanning of ballots
Diels−Alder Topochemistry via Charge-Transfer Crystals: Novel (Thermal) Single-Crystal-to-Single-Crystal Transformations
The solid-state [4+2] cycloaddition of anthracene to bis(N-ethylimino)-1,4-dithiin occurs via a unique single-phase topochemical reaction in the intermolecular (1:1) charge-transfer crystal. The thermal heteromolecular solid-state condensation involves the entire crystal, and this rare crystalline event follows topochemical control during the entire cycloaddition. As a result, a new crystalline modification of the Diels−Alder product is formed with a crystal-packing similar to that of the starting charge-transfer crystal but very different from that of the (thermodynamically favored) product modification obtained from solution-phase crystallization. Such a single-phase transformation is readily monitored by X-ray crystallography at various conversion stages, and the temporal changes in crystallographic parameters are correlated with temperature-dependent (solid-state) kinetic data that are obtained by 1H NMR spectroscopy at various reaction times. Thus, an acceleration of the solid-state reaction over time is found which results from a progressive lowering of the activation barrier for cycloaddition in a single crystal as it slowly and homogeneously converts from the reactant to the product lattice
X-ray Structural Characterization of Charge Delocalization onto the Three Equivalent Benzenoid Rings in Hexamethoxytriptycene Cation Radical
Definitive X-ray crystallographic evidence is obtained for a single hole (or a polaron) to be uniformly distributed on the three equivalent 1,2-dimethoxybenzenoid (or veratrole) rings in the hexamethoxytriptycene cation radical. This conclusion is further supported by electrochemical analysis and by the observation of an intense near-IR transition in its electronic spectrum, as well as by comparison of the spectral and electrochemical characteristics with the model compounds containing one and two dimethoxybenzene rings
Synthetic, Spectroscopic and DFT Studies of Iron Complexes with Iminobenzo(semi)quinone Ligands: Implications for o-Aminophenol Dioxygenases
The oxidative CC bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an FeII/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe(Tp)(tBuISQ)] (2 a; where Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and tBuISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2 a and its one-electron oxidized derivative [3 a]+. In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (TIP). The isomer shifts of about 0.97 mm s−1 obtained through Mössbauer experiments confirm that 2 a (and its TIP-based analogue [2 b]+) contain FeII centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the FeII–ISQ complexes yields complexes ([3 a]+ and [3 b]2+) with electronic configurations between the FeIII–ISQ and FeII–IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed
- …
