3,640 research outputs found
Improving the dynamical overlap algorithm
We present algorithmic improvements to the overlap Hybrid Monte Carlo
algorithm, including preconditioning techniques and improvements to the
correction step, used when one of the eigenvalues of the Kernel operator
changes sign, which is now O(\Delta t^2) exact.Comment: 6 pages, 3 figures; poster contribution at Lattice 2005(Algorithms
and machines
Electron transport through an interacting region: The case of a nonorthogonal basis set
The formula derived by Meir and Wingreen [Phys. Rev. Lett. {\bf 68}, 2512
(1992)] for the electron current through a confined, central region containing
interactions is generalized to the case of a nonorthogonal basis set. As in the
original work, the present derivation is based on the nonequilibrium Keldysh
formalism. By replacing the basis functions of the central region by the
corresponding elements of the dual basis, the lead- and central
region-subspaces become mutually orthogonal. The current formula is then
derived in the new basis, using a generalized version of second quantization
and Green's function theory to handle the nonorthogonality within each of the
regions. Finally, the appropriate nonorthogonal form of the perturbation series
for the Green's function is established for the case of electron-electron and
electron-phonon interactions in the central region.Comment: Added references. 8 pages, 1 figur
How to compute Green's Functions for entire Mass Trajectories within Krylov Solvers
The availability of efficient Krylov subspace solvers play a vital role for
the solution of a variety of numerical problems in computational science. Here
we consider lattice field theory. We present a new general numerical method to
compute many Green's functions for complex non-singular matrices within one
iteration process. Our procedure applies to matrices of structure , with
proportional to the unit matrix, and can be integrated within any Krylov
subspace solver. We can compute the derivatives of the solution
vector with respect to the parameter and construct the Taylor expansion
of around . We demonstrate the advantages of our method using a minimal
residual solver. Here the procedure requires intermediate vector for each
Green's function to compute. As real life example, we determine a mass
trajectory of the Wilson fermion matrix for lattice QCD. Here we find that we
can obtain Green's functions at all masses at the price of one
inversion at mass .Comment: 11 pages, 2 eps-figures, needs epsf.st
Decorrelating Topology with HMC
The investigation of the decorrelation efficiency of the HMC algorithm with
respect to vacuum topology is a prerequisite for trustworthy full QCD
simulations, in particular for the computation of topology sensitive
quantities. We demonstrate that for mpi/mrho ratios <= 0.69 sufficient
tunneling between the topological sectors can be achieved, for two flavours of
dynamical Wilson fermions close to the scaling region beta=5.6. Our results are
based on time series of length 5000 trajectories.Comment: change of comments: LATTICE98(confine
Gauge Theories with a Layered Phase
We study abelian gauge theories with anisotropic couplings in
dimensions. A layered phase is present, in the absence as well as in the
presence of fermions. A line of second order transitions separates the layered
from the Coulomb phase, if .Comment: 17 pages+9 figures (in LATeX and PostScript in a uuencoded,
compressed tar file appended at the end of the LATeX file) , CPT-94/P.303
Mass and kinetic energy distribution of the species generated bylaser ablation of La0.6Ca0.4MnO3
The mass distributions of the species generated by laser ablation from a La0.6Ca0.4MnO3 target using laser irradiation wavelengths of 193nm, 266nm and 308nm have been investigated with and without a synchronized gas pulse of N2O. The kinetic energies of the species are measured using an electrostatic deflection energy analyzer, while the mass distributions of the species were analyzed with a quadrupole mass filter. In vacuum (pressure 10−7mbar), the ablation plume consists of metal atoms and ions such as La, Ca, Mn, O, LaO, as well as multiatomic species, e.g. LaMnO+. The LaO+ diatomic species are by far the most intense diatomic species in the plume, while CaO and MnO are only detected in small amounts. The interaction of a reactive N2O gas pulse with the ablation plume leads to an increase in plume reactivity, which is desired when thin manganite films are grown, in order to incorporate the necessary amount of oxygen into the film. The N2O gas pulse appears to have a significant influence on the oxidation of the Mn species in the plume, and on the creation of negative ions, such as LaO−,O− and O 2
Chiral behavior of pseudo-Goldstone boson masses and decay constants in 2+1 flavor QCD
We present preliminary results for the chiral behavior of charged
pseudo-Goldstone-boson masses and decay constants. These are obtained in
simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea
quarks. In these simulations, mesons are composed of either valence quarks
discretized in the same way as the sea quarks (unitary simulations) or of
overlap valence quarks (mixed-action simulations). We find that the chiral
behavior of the pseudoscalar meson masses in the mixed-action calculations
cannot be explained with continuum, partially-quenched chiral perturbation
theory. We show that the inclusion of O(a^2) unitarity violations in the chiral
expansion resolves this discrepancy and that the size of the unitarity
violations required are consistent with those which we observe in the
zero-momentum, scalar-isotriplet-meson propagator.Comment: 7 pages, 3 figures, talk by L. Lellouch at the XXV International
Symposium on Lattice Field Theory (LATTICE 2007), 30 July - 4 August 2007,
Regensburg, German
Light Spectrum and Decay Constants in Full QCD with Wilson Fermions
We present results from an analysis of the light spectrum and the decay
constants f_{\pi} and f_V^{-1} in Full QCD with n_f=2 Wilson fermions at a
coupling of beta=5.6 on a 16^3x32 lattice.Comment: 3 pages, LaTeX with 4 eps figures, Talk presented at
LATTICE96(spectrum
Unquenching the Quark Model and Screened Potentials
The low-lying spectrum of the quark model is shown to be robust under the
effects of `unquenching'. In contrast, the use of screened potentials is shown
to be of limited use in models of hadrons. Applications to unquenching the
lattice Wilson loop potential and to glueball mixing in the adiabatic hybrid
spectrum are also presented.Comment: 6 pages, 3 ps figures, revtex. Version to appear in J. Phys.
- …
