4,279 research outputs found
Recommended from our members
Structured modeling for VHDL synthesis
This report will describe a proposed modeling style for the use of the VHSIC Hardware Description Language (VHDL) in design synthesis. We will describe the operations and underlying assumptions of four design models currently understood and used in practice by designers: combinational logic, functional descriptions (involving clocked components such as counters), register transfer (data path) descriptions, and behavioral (instruction set or processor) designs. We will illustrate the various uses of the VHDL description styles (structural, dataflow and behavioral) to represent characteristics of each of these design models. Emphasis is placed on how VHDL constructs should be used in order to synthesize optimal designs
Recommended from our members
Behavioral synthesis from VHDL using structured modeling
This dissertation describes work in behavioral synthesis involving the development of a VHDL Synthesis System VSS which accepts a VHDL behavioral input specification and performs technology independent synthesis to generate a circuit netlist of generic components. The VHDL language is used for input and output descriptions. An intermediate representation which incorporates signal typing and component attributes simplifies compilation and facilitates design optimization.A Structured Modeling methodology has been developed to suggest standard VHDL modeling practices for synthesis. Structured modeling provides recommendations for the use of available VHDL description styles so that optimal designs will be synthesized.A design composed of generic components is synthesized from the input description through a process of Graph Compilation, Graph Criticism, and Design Compilation. Experiments were performed to demonstrate the effects of different modeling styles on the quality of the design produced by VSS. Several alternative VHDL models were examined for each benchmark, illustrating the improvements in design quality achieved when Structured Modeling guidelines were followed
Herschel/HIFI detections of hydrides towards AFGL 2591: Envelope emission versus tenuous cloud absorption
The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic
molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides
towards the high-mass star forming region AFGL 2591. Detected are CH, CH^+, NH, OH^+, H_2O^+, while NH^+ and SH^+ have not been detected. All
molecules except for CH and CH^+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity
of the protostellar envelope. Surprisingly, the CH(J_(F,P) = 3/2_(2,−) − 1/2_(1,+)) and CH^+(J = 1−0, J = 2−1) lines are detected in emission at the
systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH^+ emission stems from
the envelope. The observed abundance and excitation of CH and CH^+ can be explained in the scenario of FUV irradiated outflow walls, where
a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical
reactions that produce these molecules
Submillimeter Imaging of NGC 891 with SHARC
The advent of submillimeter wavelength array cameras operating on large
ground-based telescopes is revolutionizing imaging at these wavelengths,
enabling high-resolution submillimeter surveys of dust emission in star-forming
regions and galaxies. Here we present a recent 350 micron image of the edge-on
galaxy NGC 891, which was obtained with the Submillimeter High Angular
Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We
find that high resolution submillimeter data is a vital complement to shorter
wavelength satellite data, which enables a reliable separation of the cold dust
component seen at millimeter wavelengths from the warmer component which
dominates the far-infrared (FIR) luminosity.Comment: 4 pages LaTeX, 2 EPS figures, with PASPconf.sty; to appear in
"Astrophysics with Infrared Surveys: A Prelude to SIRTF
Recommended from our members
VSS : a VHDL synthesis system
This report describes a register transfer synthesis system that allows a designer to interact with the design process. The designer can modify the compiled design by changing the input description, selecting optimization and mapping strategies, or graphically changing the generated design schematic. The VHDL language is used for input and output descriptions. An intermediate representation which incorporates signal typing and component attributes simplifies compilation and facilitates design optimization. The compilation process consists of two phases. First, a design composed of generic components is synthesized from the input description. Second, this design is translated into components from a particular library by a mapper and optimized by a logic optimizer. Redesign to new technologies can be accomplished by changing only the component library
Submillimeter continuum observations of Sagittarius B2 at subarcsecond spatial resolution
We report the first high spatial resolution submillimeter continuum
observations of the Sagittarius B2 cloud complex using the Submillimeter Array
(SMA). With the subarcsecond resolution provided by the SMA, the two massive
star-forming clumps Sgr B2(N) and Sgr B2(M) are resolved into multiple compact
sources. In total, twelve submillimeter cores are identified in the Sgr B2(M)
region, while only two components are observed in the Sgr B2(N) clump. The gas
mass and column density are estimated from the dust continuum emission. We find
that most of the cores have gas masses in excess of 100 M and column
densities above 10 cm. The very fragmented appearance of Sgr
B2(M), in contrast to the monolithic structure of Sgr B2 (N), suggests that the
former is more evolved. The density profile of the Sgr B2(N)-SMA1 core is well
fitted by a Plummer density distribution. This would lead one to believe that
in the evolutionary sequence of the Sgr B2 cloud complex, a massive star forms
first in an homogeneous core, and the rest of the cluster forms subsequently in
the then fragmenting structure.Comment: 4 pages, 2 figures, accepted by A&A letter
Multi-agent system for dynamic manufacturing system optimization
This paper deals with the application of multi-agent system concept for optimization of dynamic uncertain process. These problems are known to have a computationally demanding objective function, which could turn to be infeasible when large problems are considered. Therefore, fast approximations to the objective function are required. This paper employs bundle of intelligent systems algorithms tied together in a multi-agent system. In order to demonstrate the system, a metal reheat furnace scheduling problem is adopted for highly demanded optimization problem. The proposed multi-agent approach has been evaluated for different settings of the reheat furnace scheduling problem. Particle Swarm Optimization, Genetic Algorithm with different classic and advanced versions: GA with chromosome differentiation, Age GA, and Sexual GA, and finally a Mimetic GA, which is based on combining the GA as a global optimizer and the PSO as a local optimizer. Experimentation has been performed to validate the multi-agent system on the reheat furnace scheduling problem
The methanol lines and hot core of OMC2-FIR4, an intermediate-mass protostar, with Herschel/HIFI
In contrast with numerous studies on the physical and chemical structure of low- and high-mass protostars, much less is known about their intermediate-mass counterparts, a class of objects that could help to elucidate the mechanisms of star formation on both ends of the mass range. We present the first results from a rich HIFI spectral dataset on an intermediate-mass protostar, OMC2-FIR4, obtained in the CHESS (Chemical HErschel Survey of Star forming regions) key programme. The more than 100 methanol lines detected between 554 and 961 GHz cover a range in upper level energy of 40 to 540 K. Our physical interpretation focusses on the hot core, but likely the cold envelope and shocked regions also play a role in reality, because an analysis of the line profiles suggests the presence of multiple emission components. An upper limit of 10^(-6) is placed on the methanol abundance in the hot core, using a population diagram, large-scale source model and other considerations. This value is consistent with abundances previously seen in low-mass hot cores. Furthermore, the highest energy lines at the highest frequencies display asymmetric profiles, which may arise from infall around the hot core
The CHESS spectral survey of star forming regions: Peering into the protostellar shock L1157-B1 - II. Shock dynamics
Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent.
Aims. We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region.
Methods. The CO 5-4 and o-H2_O 1_(10)–1_(01) lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555–636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock.
Results. Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 10^5 cm^(-3)) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0–3.0) × 10^4 cm^(-3)), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10^(-7) up to 8 × 10^(-5). The properties of the high-velocity component agree well with the predictions of steady-state C-shock models
- …
