6,271 research outputs found

    N-Triflylphosphorimidoyl Trichloride: A Versatile Reagent for the Synthesis of Strong Chiral Brønsted Acids

    Get PDF
    A series of strong Brønsted acids has been synthesized in high yields using N-triflylphosphorimidoyl trichloride as reagent. The syntheses proceed efficiently with electron-rich, electron-deficient, and sterically hindered substrates

    Asymmetric Catalysis via Cyclic, Aliphatic Oxocarbenium Ions

    No full text
    A direct enantioselective synthesis of substituted oxygen heterocycles from lactol acetates and enolsilanes has been realized using a highly reactive and confined imidodiphosphorimidate (IDPi) catalyst. Various chiral oxygen heterocycles, including tetrahydrofurans, tetrahydropyrans, oxepanes, chromans, and dihydrobenzofurans, were obtained in excellent enantioselectivities by reacting the corresponding lactol acetates with diverse enol silanes. Mechanistic studies suggest the reaction to proceed via a nonstabilized, aliphatic, cyclic oxocarbenium ion intermediate paired with the confined chiral counteranion

    Information Cascades: Evidence from An Experiment with Financial Market Professionals

    Get PDF
    Previous empirical studies of information cascades use either naturally occurring data or laboratory experiments with student subjects. We combine attractive elements from each of these lines of research by observing market professionals from the Chicago Board of Trade (CBOT) in a controlled environment. As a baseline, we compare their behavior to student choices in similar treatments. We further examine whether, and to what extent, cascade formation is influenced by both private signal strength and the quality of previous public signals, as well as decision heuristics that differ from Bayesian rationality. Analysis of over 1,500 individual decisions suggests that CBOT professionals are better able to discern the quality of public signals than their student counterparts. This leads to much different cascade formation. Further, while the behavior of students is consistent with the notion that losses loom larger than gains, market professionals are unaffected by the domain of earnings. These results are important in both a positive and normative sense.

    Rotating Boson Stars in 5 Dimensions

    Full text link
    We study rotating boson stars in five spacetime dimensions. The boson fields consist of a complex doublet scalar field. Considering boson stars rotating in two orthogonal planes with both angular momenta of equal magnitude, a special ansatz for the boson field and the metric allows for solutions with nontrivial dependence on the radial coordinate only. The charge of the scalar field equals the sum of the angular momenta. The rotating boson stars are globally regular and asymptotically flat. For our choice of a sixtic potential the rotating boson star solutions possess a flat spacetime limit. We study the solutions in flat and curved spacetime.Comment: 17 pages, 6 figure

    Color Transparency at COMPASS energies

    Full text link
    Pionic quasielastic knockout of protons from nuclei at 200 GeV show very large effects of color transparency as -t increases from 0 to several GeV^2. Similar effects are expected for quasielastic photoproduction of vector mesons.Comment: 9 pages, 4 figure

    Design of Pre-Dumping Ring Spin Rotator with a Possibility of Helicity Switching for Polarized Positrons at the ILC

    Full text link
    The use of polarized beams enhance the possibility of the precision measurements at the International Linear Collider (ILC). In order to preserve the degree of polarization during beam transport spin rotators are included in the current TDR ILC Lattice. In this report some advantages of using a combined spin rotator/spin flipper are discussed. A few possible lattice designs of spin flipper developed at DESY in 2012 are presented.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS15), Whistler, Canada, 2-6 November 201

    Rotating Boson Stars and Q-Balls

    Full text link
    We consider axially symmetric, rotating boson stars. Their flat space limits represent spinning Q-balls. We discuss their properties and determine their domain of existence. Q-balls and boson stars are stationary solutions and exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like frequency dependence of the boson stars. We address the flat space limit and the limit of strong gravitational coupling. For comparison we also determine the properties of spherically symmetric Q-balls and boson stars.Comment: 22 pages, 18 figure

    Non-Simplified SUSY: Stau-Coannihilation at LHC and ILC

    Full text link
    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small stau_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.Comment: 42 pages, 18 figures, 12 table

    Large and Almost Maximal Neutrino Mixing within the Type II See-Saw Mechanism

    Get PDF
    Within the type II see-saw mechanism the light neutrino mass matrix is given by a sum of a direct (or triplet) mass term and the conventional (type I) see-saw term. Both versions of the see-saw mechanism explain naturally small neutrino masses, but the type II scenario offers interesting additional possibilities to explain large or almost maximal or vanishing mixings which are discussed in this paper. We first introduce ``type II enhancement'' of neutrino mixing, where moderate cancellations between the two terms can lead to large neutrino mixing even if all individual mass matrices and terms generate small mixing. However, nearly maximal or vanishing mixings are not naturally explained in this way, unless there is a certain initial structure (symmetry) which enforces certain elements of the matrices to be identical or related in a special way. We therefore assume that the leading structure of the neutrino mass matrix is the triplet term and corresponds to zero U_{e3} and maximal theta_{23}. Small but necessary corrections are generated by the conventional see-saw term. Then we assume that one of the two terms corresponds to an extreme mixing scenario, such as bimaximal or tri-bimaximal mixing. Deviations from this scheme are introduced by the second term. One can mimic Quark-Lepton Complementarity in this way. Finally, we note that the neutrino mass matrix for tri-bimaximal mixing can be -- depending on the mass hierarchy -- written as a sum of two terms with simple structure. Their origin could be the two terms of type II see-saw.Comment: 25 pages. Comments and references added, to appear in JHE
    corecore