64,248 research outputs found
Parity Symmetry in QED3
Schwinger-Dyson equations are used to study spontaneous chiral and parity
symmetry breaking of three dimensional quantum electrodynamics with
two-component fermions. This theory admits a topological photon mass that
explicitly breaks parity symmetry and generates a fermion mass. We show that
the pattern of symmetry breaking maintains parity but breaks chiral symmetry.
We also find that chiral symmetry is restored at a critical number of fermion
flavours in our truncation scheme. The Coleman-Hill theorem is used to
demonstrate that the results are reasonably accurate.Comment: 11 pages, 5 figure
A low-power opportunistic communication protocol for wearable applications
© 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment
Energy-Efficient Power Allocation in OFDM Systems with Wireless Information and Power Transfer
This paper considers an orthogonal frequency division multiplexing (OFDM)
downlink point-to-point system with simultaneous wireless information and power
transfer. It is assumed that the receiver is able to harvest energy from noise,
interference, and the desired signals.
We study the design of power allocation algorithms maximizing the energy
efficiency of data transmission (bit/Joule delivered to the receiver). In
particular, the algorithm design is formulated as a high-dimensional non-convex
optimization problem which takes into account the circuit power consumption,
the minimum required data rate, and a constraint on the minimum power delivered
to the receiver. Subsequently, by exploiting the properties of nonlinear
fractional programming, the considered non-convex optimization problem, whose
objective function is in fractional form, is transformed into an equivalent
optimization problem having an objective function in subtractive form, which
enables the derivation of an efficient iterative power allocation algorithm. In
each iteration, the optimal power allocation solution is derived based on dual
decomposition and a one-dimensional search. Simulation results illustrate that
the proposed iterative power allocation algorithm converges to the optimal
solution, and unveil the trade-off between energy efficiency, system capacity,
and wireless power transfer: (1) In the low transmit power regime, maximizing
the system capacity may maximize the energy efficiency. (2) Wireless power
transfer can enhance the energy efficiency, especially in the interference
limited regime.Comment: 6 pages, Accepted for presentation at the IEEE International
Conference on Communications (ICC) 201
A numerical study of an inline oscillating cylinder in a free stream
Simulations of a cylinder undergoing externally controlled sinusoidal oscillations in the free stream direction have been performed. The frequency of oscillation was kept equal to the vortex shedding frequency from a fixed cylinder, while the amplitude of oscillation was varied, and the response of the flow measured. With varying amplitude, a rich series of dynamic responses was recorded. With increasing amplitude, these states included wakes similar to the Kármán vortex street, quasiperiodic oscillations interleaved with regions of synchronized periodicity (periodic on multiple oscillation cycles), a period-doubled state and chaotic oscillations. It is hypothesized that, for low to moderate amplitudes, the wake dynamics are controlled by vortex shedding at a global frequency, modified by the oscillation. This vortex shedding is frequency modulated by the driven oscillation and amplitude modulated by vortex interaction. Data are presented to support this hypothesis
- …
