908 research outputs found
Bosons Confined in Optical Lattices: the Numerical Renormalization Group revisited
A Bose-Hubbard model, describing bosons in a harmonic trap with a
superimposed optical lattice, is studied using a fast and accurate variational
technique (MF+NRG): the Gutzwiller mean-field (MF) ansatz is combined with a
Numerical Renormalization Group (NRG) procedure in order to improve on both.
Results are presented for one, two and three dimensions, with particular
attention to the experimentally accessible momentum distribution and possible
satellite peaks in this distribution. In one dimension, a comparison is made
with exact results obtained using Stochastich Series Expansion.Comment: 10 pages, 15 figure
Probing the Superfluid to Mott Insulator Transition at the Single Atom Level
Quantum gases in optical lattices offer an opportunity to experimentally
realize and explore condensed matter models in a clean, tunable system. We
investigate the Bose-Hubbard model on a microscopic level using single
atom-single lattice site imaging; our technique enables space- and
time-resolved characterization of the number statistics across the
superfluid-Mott insulator quantum phase transition. Site-resolved probing of
fluctuations provides us with a sensitive local thermometer, allows us to
identify microscopic heterostructures of low entropy Mott domains, and enables
us to measure local quantum dynamics, revealing surprisingly fast transition
timescales. Our results may serve as a benchmark for theoretical studies of
quantum dynamics, and may guide the engineering of low entropy phases in a
lattice
Breaking the resilience of a two-dimensional Bose-Einstein condensate to fragmentation
A two-dimensional Bose-Einstein condensate (BEC) split by a radial potential
barrier is investigated. We determine on an accurate many-body level the
system's ground-state phase diagram as well as a time-dependent phase diagram
of the splitting process. Whereas the ground state is condensed for a wide
range of parameters, the time-dependent splitting process leads to substantial
fragmentation. We demonstrate for the first time the dynamical fragmentation of
a BEC despite its ground state being condensed. The results are analyzed by a
mean-field model and suggest that a large manifold of low-lying fragmented
excited states can significantly impact the dynamics of trapped two-dimensional
BECs.Comment: 5+eps pages, 4 figure
Optimal Monte Carlo Updating
Based on Peskun's theorem it is shown that optimal transition matrices in
Markov chain Monte Carlo should have zero diagonal elements except for the
diagonal element corresponding to the largest weight. We will compare the
statistical efficiency of this sampler to existing algorithms, such as
heat-bath updating and the Metropolis algorithm. We provide numerical results
for the Potts model as an application in classical physics. As an application
in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model
which have been simulated by the directed loop algorithm in the stochastic
series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio
Maximally inhomogeneous G\"{o}del-Farnsworth-Kerr generalizations
It is pointed out that physically meaningful aligned Petrov type D perfect
fluid space-times with constant zero-order Riemann invariants are either the
homogeneous solutions found by G\"{o}del (isotropic case) and Farnsworth and
Kerr (anisotropic case), or new inhomogeneous generalizations of these with
non-constant rotation. The construction of the line element and the local
geometric properties for the latter are presented.Comment: 4 pages, conference proceeding of Spanish Relativity Meeting (ERE
2009, Bilbao
Decay modes of two repulsively interacting bosons
We study the decay of two repulsively interacting bosons tunneling through a
delta potential barrier by direct numerical solution of the time-dependent
Schr\"odinger equation. The solutions are analyzed according to the regions of
particle presence: both particles inside the trap (in-in), one particle in and
one particle out (in-out), and both particles outside (out-out). It is shown
that the in-in probability is dominated by exponential decay, and its decay
rate is predicted very well from outgoing boundary conditions.
Up to a certain range of interaction strength the decay of in-out probability
is dominated by the single particle decay mode.
The decay mechanisms are adequately described by simple models.Comment: 18 pages, 13 figure
- …
