727 research outputs found
Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes
We report the observation of thermally driven mechanical vibrations of
suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition
(CVD). Several experimental procedures are used to suspend carbon nanotubes.
The vibration is observed as a blurring in images taken with a scanning
electron microscope. The measured vibration amplitudes are compared with a
model based on linear continuum mechanics.Comment: pdf including figures, see:
http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd
Measurement of the Induced Proton Polarization P_n in the 12C(e,e'\vec{p}) Reaction
The first measurements of the induced proton polarization, P_n, for the 12C
(e,e'\vec{p}) reaction are reported. The experiment was performed at quasifree
kinematics for energy and momentum transfer (\omega,q) \approx (294 MeV, 756
MeV/c) and sampled a recoil momentum range of 0-250 MeV/c. The induced
polarization arises from final-state interactions and for these kinematics is
dominated by the real part of the spin-orbit optical potential. The
distorted-wave impulse approximation provides good agreement with data for the
1p_{3/2} shell. The data for the continuum suggest that both the 1s_{1/2} shell
and underlying l > 1 configurations contribute.Comment: 5 pages LaTeX, 2 postscript figures, accepted by Physical Reveiw
Letter
A Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron
Recoil proton polarization observables were measured for both the p(,e) and d(,en reactions at two values of Q using a newly commissioned proton
Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The
hydrogen and deuterium spin-dependent observables and
, the induced polarization and the form factor ratio
were measured under identical kinematics. The deuterium and
hydrogen results are in good agreement with each other and with the plane-wave
impulse approximation (PWIA).Comment: 9 pages, 1 figure; accepted by Phys. Rev. Let
A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region
The coincidence cross-section and the interference structure function, R_LT,
were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and
central momentum transfer of q=400 MeV/c. The measurement was at an opening
angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to
65 MeV. The R_LT structure function is found to be consistent with zero for E_m
> 50 MeV, confirming an earlier study which indicated that R_L vanishes in this
region. The integrated strengths of the p- and s-shell are compared with a
Distorted Wave Impulse Approximation calculation. The s-shell strength and
shape are compared with a Hartree Fock-Random Phase Approximation calculation.
The DWIA calculation overestimates the cross sections for p- and s-shell proton
knockout as expected, but surprisingly agrees with the extracted R_LT value for
both shells. The HF-RPA calculation describes the data more consistently, which
may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.
Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems
We explore the quantum aspects of an elastic bar supported at both ends and
subject to compression. If strain rather than stress is held fixed, the system
remains stable beyond the buckling instability, supporting two potential
minima. The classical equilibrium transverse displacement is analogous to a
Ginsburg-Landau order parameter, with strain playing the role of temperature.
We calculate the quantum fluctuations about the classical value as a function
of strain. Excitation energies and quantum fluctuation amplitudes are compared
for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter
Optical Demonstration of THz, Dual-Polarization Sensitive Microwave Kinetic Inductance Detectors
The next generation BLAST experiment (BLAST-TNG) is a suborbital balloon
payload that seeks to map polarized dust emission in the 250 m, 350 m
and 500 m wavebands. The instrument utilizes a stepped half-wave plate to
reduce systematics. The general requirement of the detectors is that they are
photon-noise-limited and dual-polarization sensitive. To achieve this goal, we
are developing three monolithic arrays of cryogenic sensors, one for each
waveband. Each array is feedhorn-coupled and each spatial pixel consists of two
orthogonally spaced polarization-sensitive microwave kinetic inductance
detectors (MKIDs) fabricated from a Ti/TiN multilayer film. In previous work,
we demonstrated photon-noise-limited sensitivity in 250 m waveband single
polarization devices. In this work, we present the first results of
dual-polarization sensitive MKIDs at 250 m.Comment: 7 pages, 4 figures, published by JLT
Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance
The recoil proton polarization has been measured in the p (\vec e,e'\vec p)
pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2
and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz
Microtron. Due to the spin precession in a magnetic spectrometer, all three
proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y =
(-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be
measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR =
(-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework
of the Mainz Unitary Isobar Model. The consistency among the reduced
polarizations and the extraction of the ratio of longitudinal to transverse
response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure
A Measurement of the Electric Form Factor of the Neutron through at (GeV/c)
We report the first measurement of the neutron electric form factor
via using a solid polarized target. was
determined from the beam-target asymmetry in the scattering of longitudinally
polarized electrons from polarized deuterated ammonia, ND. The
measurement was performed in Hall C at Thomas Jefferson National Accelerator
Facility (TJNAF) in quasi free kinematics with the target polarization
perpendicular to the momentum transfer. The electrons were detected in a
magnetic spectrometer in coincidence with neutrons in a large solid angle
segmented detector. We find at (GeV/c).Comment: Latex2e 5 pages, 3 figure
Realistic Model of the Nucleon Spectral Function in Few- and Many- Nucleon Systems
By analysing the high momentum features of the nucleon momentum distribution
in light and complex nuclei, it is argued that the basic two-nucleon
configurations generating the structure of the nucleon Spectral Function at
high values of the nucleon momentum and removal energy, can be properly
described by a factorised ansatz for the nuclear wave function, which leads to
a nucleon Spectral Function in the form of a convolution integral involving the
momentum distributions describing the relative and center-of-mass motion of a
correlated nucleon-nucleon pair embedded in the medium. The Spectral Functions
of and infinite nuclear matter resulting from the convolution formula
and from many-body calculations are compared, and a very good agreement in a
wide range of values of nucleon momentum and removal energy is found.
Applications of the model to the analysis of inclusive and exclusive processes
are presented, illustrating those features of the cross section which are
sensitive to that part of the Spectral Function which is governed by
short-range and tensor nucleon-nucleon correlations.Comment: 40 pages Latex , 16 ps figures available from the above e-mail
address or from [email protected]
The Quasielastic 3He(e,e'p)d Reaction at Q^2 = 1.5 GeV^2 for Recoil Momenta up to 1 GeV/c
We have studied the quasielastic 3He(e,e'p)d reaction in perpendicular
coplanar kinematics, with the energy and momentum transferred by the electron
fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e'p)d cross section
was measured for missing momenta up to 1000 MeV/c, while the A_TL asymmetry was
extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150
MeV/c, the measured cross section is described well by calculations that use a
variational ground-state wave function of the 3He nucleus derived from a
potential that includes three-body forces. For missing momenta from 150 to 750
MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c,
the experimental cross section is more than an order of magnitude larger than
predicted by available theories. The A_TL asymmetry displays characteristic
features of broken factorization, and is described reasonably well by available
models.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, v3: changed
conten
- …
