1,008 research outputs found
Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism
People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders
Excessive gas exchange impairment during exercise in a subject with a history of bronchopulmonary dysplasia and high altitude pulmonary edema
A 27-year-old male subject (V(O2 max)), 92% predicted) with a history of bronchopulmonary dysplasia (BPD) and a clinically documented case of high altitude pulmonary edema (HAPE) was examined at rest and during exercise. Pulmonary function testing revealed a normal forced vital capacity (FVC, 98.1% predicted) and diffusion capacity for carbon monoxide (D(L(CO)), 91.2% predicted), but significant airway obstruction at rest [forced expiratory volume in 1 sec (FEV(1)), 66.5% predicted; forced expiratory flow at 50% of vital capacity (FEF(50)), 34.3% predicted; and FEV(1) /FVC 56.5%] that was not reversible with an inhaled bronchodilator. Gas exchange worsened from rest to exercise, with the alveolar to arterial P(O2) difference (AaD(O2)) increasing from 0 at rest to 41 mmHg at maximal normoxic exercise (VO(2) = 41.4 mL/kg/min) and from 11 to 31 mmHg at maximal hypoxic exercise (VO(2) = 21.9 mL/kg/min). Arterial P(O2) decreased to 67.8 and 29.9 mmHg at maximal normoxic and hypoxic exercise, respectively. These data indicate that our subject with a history of BPD is prone to a greater degree of exercise-induced arterial hypoxemia for a given VO(2) and F(I(O2)) than healthy age-matched controls, which may increase the subject's susceptibility to high altitude illness
Hypoxia, not pulmonary vascular pressure induces blood flow through intrapulmonary arteriovenous anastomoses
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times-a-day for 48 h) to prevent increases in PASP, and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ+HCO3-) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3-], and PaCO2. AZ decreased pH (-0.08 ± 0.01), [HCO3-] (-7.1 ± 0.7 mmol/l), and PaCO2 (-4.5 ± 1.4 mmHg; p<0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (p<0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (p<0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (p<0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H+ concentration or PaCO2.
Abbreviations list: AZ, acetazolamide; FEV1, forced expiratory volume in 1 second; FIO2, fraction of inspired oxygen; FVC, forced vital capacity; Hb, total haemoglobin; HPV, hypoxic pulmonary vasoconstriction; HR, heart rate; IPAVA, intrapulmonary arteriovenous anastomoses; MAP, mean arterial pressure; PASP, pulmonary artery systolic pressure; PETCO2, end-tidal partial pressure of carbon dioxide; PETO2, end-tidal partial pressure of oxygen; PFO, patent foramen ovale; PVR, pulmonary vascular resistance; Q̇c, cardiac output; RVOT, right ventricular outflow tract; SpO2, oxyhaemoglobin saturation; SV, stroke volume; TRV, tricuspid regurgitant velocity; V̇E, minute ventilation; VTI, velocity-time integra
Free induction signal from biexcitons and bound excitons
A theory of the free induction signal from biexcitons and bound excitons is
presented. The simultaneous existence of the exciton continuum and a bound
state is shown to result in a new type of time dependence of the free
induction. The optically detected signal increases in time and oscillates with
increasing amplitude until damped by radiative or dephasing processes.
Radiative decay is anomalously fast and can result in strong picosecond pulses.
The expanding area of a coherent exciton polarization (inflating antenna),
produced by the exciting pulse, is the underlying physical mechanism. The
developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1
Theory of exciton-exciton correlation in nonlinear optical response
We present a systematic theory of Coulomb interaction effects in the
nonlinear optical processes in semiconductors using a perturbation series in
the exciting laser field. The third-order dynamical response consists of
phase-space filling correction, mean-field exciton-exciton interaction, and
two-exciton correlation effects expressed as a force-force correlation
function. The theory provides a unified description of effects of bound and
unbound biexcitons, including memory-effects beyond the Markovian
approximation. Approximations for the correlation function are presented.Comment: RevTex, 35 pages, 10 PostScript figs, shorter version submitted to
Physical Review
The beginnings of geography teaching and research in the University of Glasgow: the impact of J.W. Gregory
J.W. Gregory arrived in Glasgow from Melbourne in 1904 to take up the post of foundation Professor of Geology in the University of Glasgow. Soon after his arrival in Glasgow he began to push for the setting up of teaching in Geography in Glasgow, which came to pass in 1909 with the appointment of a Lecturer in Geography. This lecturer was based in the Department of Geology in the University's East Quad. Gregory's active promotion of Geography in the University was matched by his extensive writing in the area, in textbooks, journal articles and popular books. His prodigious output across a wide range of subject areas is variably accepted today, with much of his geomorphological work being judged as misguided to varying degrees. His 'social science' publications - in the areas of race, migration, colonisation and economic development of Africa and Australia - espouse a viewpoint that is unacceptable in the twenty-first century. Nonetheless, that viewpoint sits squarely within the social and economic traditions of Gregory's era, and he was clearly a key 'Establishment' figure in natural and social sciences research in the first half of the twentieth century. The establishment of Geography in the University of Glasgow remains enduring testimony of J.W. Gregory's energy, dedication and foresight
Facile access to a heterocyclic, sp3-rich chemical scaffold via a tandem condensation/intramolecular nitrone–alkene [3+2] cycloaddition strategy
A heterocyclic, sp3-rich chemical scaffold was synthesised in just 6 steps via a highly regio- and diastereo-selective tandem nitrone formation/intramolecular nitrone–alkene [3+2] cycloaddition reaction. A library of 543 lead-like compounds based on the scaffold core has been produced
Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons
We study theoretically the ultrafast nonlinear optical response of quantum
well excitons in a perpendicular magnetic field. We show that for
magnetoexcitons confined to the lowest Landau levels, the third-order
four-wave-mixing (FWM) polarization is dominated by the exciton-exciton
interaction effects. For repulsive interactions, we identify two regimes in the
time-evolution of the optical polarization characterized by exponential and
{\em power law} decay of the FWM signal. We describe these regimes by deriving
an analytical solution for the memory kernel of the two-exciton wave-function
in strong magnetic field. For strong exciton-exciton interactions, the decay of
the FWM signal is governed by an antibound resonance with an
interaction-dependent decay rate. For weak interactions, the continuum of
exciton-exciton scattering states leads to a long tail of the time-integrated
FWM signal for negative time delays, which is described by the product of a
power law and a logarithmic factor. By combining this analytic solution with
numerical calculations, we study the crossover between the exponential and
non-exponential regimes as a function of magnetic field. For attractive
exciton-exciton interaction, we show that the time-evolution of the FWM signal
is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology
BACKGROUND: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. METHODS AND RESULTS: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. CONCLUSIONS: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects
Resting pulmonary haemodynamics and shunting: a comparison of sea-level inhabitants to high altitude Sherpas
The incidence of blood flow through intracardiac shunt and intrapulmonary arteriovenous anastomoses (IPAVA) may differ between Sherpas permanently residing at high altitude (HA) and sea-level (SL) inhabitants as a result of evolutionary pressure to improve gas exchange and/or resting pulmonary haemodynamics. To test this hypothesis we compared sea-level inhabitants at SL (SL-SL; n = 17), during acute isocapnic hypoxia (SL-HX; n = 7) and following 3 weeks at 5050 m (SL-HA; n = 8 non-PFO subjects) to Sherpas at 5050 m (n = 14). inline image, heart rate, pulmonary artery systolic pressure (PASP) and cardiac index (Qi) were measured during 5 min of room air breathing at SL and HA, during 20 min of isocapnic hypoxia (SL-HX; inline image = 47 mmHg) and during 5 min of hyperoxia (inline image = 1.0; Sherpas only). Intracardiac shunt and IPAVA blood flow was evaluated by agitated saline contrast echocardiography. Although PASP was similar between groups at HA (Sherpas: 30.0 ± 6.0 mmHg; SL-HA: 32.7 ± 4.2 mmHg; P = 0.27), it was greater than SL-SL (19.4 ± 2.1 mmHg; P < 0.001). The proportion of subjects with intracardiac shunt was similar between groups (SL-SL: 41%; Sherpas: 50%). In the remaining subjects, IPAVA blood flow was found in 100% of subjects during acute isocapnic hypoxia at SL, but in only 4 of 7 Sherpas and 1 of 8 SL-HA subjects at rest. In conclusion, differences in resting pulmonary vascular regulation, intracardiac shunt and IPAVA blood flow do not appear to account for any adaptation to HA in Sherpas. Despite elevated pulmonary pressures and profound hypoxaemia, IPAVA blood flow in all subjects at HA was lower than expected compared to acute normobaric hypoxia
- …
