798 research outputs found
Spacecraft attitude detection system by stellar reference Patent
Attitude detection system using stellar references for three-axis control and spin stabilized spacecraf
Analysis, Synthesis, and Estimation of Fractal-Rate Stochastic Point Processes
Fractal and fractal-rate stochastic point processes (FSPPs and FRSPPs)
provide useful models for describing a broad range of diverse phenomena,
including electron transport in amorphous semiconductors, computer-network
traffic, and sequences of neuronal action potentials. A particularly useful
statistic of these processes is the fractal exponent , which may be
estimated for any FSPP or FRSPP by using a variety of statistical methods.
Simulated FSPPs and FRSPPs consistently exhibit bias in this fractal exponent,
however, rendering the study and analysis of these processes non-trivial. In
this paper, we examine the synthesis and estimation of FRSPPs by carrying out a
systematic series of simulations for several different types of FRSPP over a
range of design values for . The discrepancy between the desired and
achieved values of is shown to arise from finite data size and from
the character of the point-process generation mechanism. In the context of
point-process simulation, reduction of this discrepancy requires generating
data sets with either a large number of points, or with low jitter in the
generation of the points. In the context of fractal data analysis, the results
presented here suggest caution when interpreting fractal exponents estimated
from experimental data sets.Comment: 61 pages latex, 10 PS figures, to appear in Fractals 5, 199
Spatiotemporal complexity of the universe at subhorizon scales
This is a short note on the spatiotemporal complexity of the dynamical
state(s) of the universe at subhorizon scales (up to 300 Mpc). There are
reasons, based mainly on infrared radiative divergences, to believe that one
can encounter a flicker noise in the time domain, while in the space domain,
the scaling laws are reflected in the (multi)fractal distribution of galaxies
and their clusters. There exist recent suggestions on a unifying treatment of
these two aspects within the concept of spatiotemporal complexity of dynamical
systems driven out of equilibrium. Spatiotemporal complexity of the subhorizon
dynamical state(s) of the universe is a conceptually nice idea and may lead to
progress in our understanding of the material structures at large scalesComment: references update
Scaling-violation phenomena and fractality in the human posture control systems
By analyzing the movements of quiet standing persons by means of wavelet
statistics, we observe multiple scaling regions in the underlying body
dynamics. The use of the wavelet-variance function opens the possibility to
relate scaling violations to different modes of posture control. We show that
scaling behavior becomes close to perfect, when correctional movements are
dominated by the vestibular system.Comment: 12 pages, 4 figures, to appear in Phys. Rev.
Self-Organized Criticality model for Brain Plasticity
Networks of living neurons exhibit an avalanche mode of activity,
experimentally found in organotypic cultures. Here we present a model based on
self-organized criticality and taking into account brain plasticity, which is
able to reproduce the spectrum of electroencephalograms (EEG). The model
consists in an electrical network with threshold firing and activity-dependent
synapse strenghts. The system exhibits an avalanche activity power law
distributed. The analysis of the power spectra of the electrical signal
reproduces very robustly the power law behaviour with the exponent 0.8,
experimentally measured in EEG spectra. The same value of the exponent is found
on small-world lattices and for leaky neurons, indicating that universality
holds for a wide class of brain models.Comment: 4 pages, 3 figure
Integrated random processes exhibiting long tails, finite moments and 1/f spectra
A dynamical model based on a continuous addition of colored shot noises is
presented. The resulting process is colored and non-Gaussian. A general
expression for the characteristic function of the process is obtained, which,
after a scaling assumption, takes on a form that is the basis of the results
derived in the rest of the paper. One of these is an expansion for the
cumulants, which are all finite, subject to mild conditions on the functions
defining the process. This is in contrast with the Levy distribution -which can
be obtained from our model in certain limits- which has no finite moments. The
evaluation of the power spectrum and the form of the probability density
function in the tails of the distribution shows that the model exhibits a 1/f
spectrum and long tails in a natural way. A careful analysis of the
characteristic function shows that it may be separated into a part representing
a Levy processes together with another part representing the deviation of our
model from the Levy process. This allows our process to be viewed as a
generalization of the Levy process which has finite moments.Comment: Revtex (aps), 15 pages, no figures. Submitted to Phys. Rev.
Non-equilibrium dynamics of stochastic point processes with refractoriness
Stochastic point processes with refractoriness appear frequently in the
quantitative analysis of physical and biological systems, such as the
generation of action potentials by nerve cells, the release and reuptake of
vesicles at a synapse, and the counting of particles by detector devices. Here
we present an extension of renewal theory to describe ensembles of point
processes with time varying input. This is made possible by a representation in
terms of occupation numbers of two states: Active and refractory. The dynamics
of these occupation numbers follows a distributed delay differential equation.
In particular, our theory enables us to uncover the effect of refractoriness on
the time-dependent rate of an ensemble of encoding point processes in response
to modulation of the input. We present exact solutions that demonstrate generic
features, such as stochastic transients and oscillations in the step response
as well as resonances, phase jumps and frequency doubling in the transfer of
periodic signals. We show that a large class of renewal processes can indeed be
regarded as special cases of the model we analyze. Hence our approach
represents a widely applicable framework to define and analyze non-stationary
renewal processes.Comment: 8 pages, 4 figure
Liquid-liquid equilibrium for monodisperse spherical particles
A system of identical particles interacting through an isotropic potential
that allows for two preferred interparticle distances is numerically studied.
When the parameters of the interaction potential are adequately chosen, the
system exhibits coexistence between two different liquid phases (in addition to
the usual liquid-gas coexistence). It is shown that this coexistence can occur
at equilibrium, namely, in the region where the liquid is thermodynamically
stable.Comment: 6 pages, 8 figures. Published versio
Curve counting via stable pairs in the derived category
For a nonsingular projective 3-fold , we define integer invariants
virtually enumerating pairs where is an embedded curve and
is a divisor. A virtual class is constructed on the associated
moduli space by viewing a pair as an object in the derived category of . The
resulting invariants are conjecturally equivalent, after universal
transformations, to both the Gromov-Witten and DT theories of . For
Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing
formula in the derived category.
Several calculations of the new invariants are carried out. In the Fano case,
the local contributions of nonsingular embedded curves are found. In the local
toric Calabi-Yau case, a completely new form of the topological vertex is
described.
The virtual enumeration of pairs is closely related to the geometry
underlying the BPS state counts of Gopakumar and Vafa. We prove that our
integrality predictions for Gromov-Witten invariants agree with the BPS
integrality. Conversely, the BPS geometry imposes strong conditions on the
enumeration of pairs.Comment: Corrected typos and duality error in Proposition 4.6. 47 page
- …
