798 research outputs found

    Spacecraft attitude detection system by stellar reference Patent

    Get PDF
    Attitude detection system using stellar references for three-axis control and spin stabilized spacecraf

    Analysis, Synthesis, and Estimation of Fractal-Rate Stochastic Point Processes

    Full text link
    Fractal and fractal-rate stochastic point processes (FSPPs and FRSPPs) provide useful models for describing a broad range of diverse phenomena, including electron transport in amorphous semiconductors, computer-network traffic, and sequences of neuronal action potentials. A particularly useful statistic of these processes is the fractal exponent α\alpha, which may be estimated for any FSPP or FRSPP by using a variety of statistical methods. Simulated FSPPs and FRSPPs consistently exhibit bias in this fractal exponent, however, rendering the study and analysis of these processes non-trivial. In this paper, we examine the synthesis and estimation of FRSPPs by carrying out a systematic series of simulations for several different types of FRSPP over a range of design values for α\alpha. The discrepancy between the desired and achieved values of α\alpha is shown to arise from finite data size and from the character of the point-process generation mechanism. In the context of point-process simulation, reduction of this discrepancy requires generating data sets with either a large number of points, or with low jitter in the generation of the points. In the context of fractal data analysis, the results presented here suggest caution when interpreting fractal exponents estimated from experimental data sets.Comment: 61 pages latex, 10 PS figures, to appear in Fractals 5, 199

    Spatiotemporal complexity of the universe at subhorizon scales

    Full text link
    This is a short note on the spatiotemporal complexity of the dynamical state(s) of the universe at subhorizon scales (up to 300 Mpc). There are reasons, based mainly on infrared radiative divergences, to believe that one can encounter a flicker noise in the time domain, while in the space domain, the scaling laws are reflected in the (multi)fractal distribution of galaxies and their clusters. There exist recent suggestions on a unifying treatment of these two aspects within the concept of spatiotemporal complexity of dynamical systems driven out of equilibrium. Spatiotemporal complexity of the subhorizon dynamical state(s) of the universe is a conceptually nice idea and may lead to progress in our understanding of the material structures at large scalesComment: references update

    Scaling-violation phenomena and fractality in the human posture control systems

    Get PDF
    By analyzing the movements of quiet standing persons by means of wavelet statistics, we observe multiple scaling regions in the underlying body dynamics. The use of the wavelet-variance function opens the possibility to relate scaling violations to different modes of posture control. We show that scaling behavior becomes close to perfect, when correctional movements are dominated by the vestibular system.Comment: 12 pages, 4 figures, to appear in Phys. Rev.

    Self-Organized Criticality model for Brain Plasticity

    Full text link
    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model based on self-organized criticality and taking into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists in an electrical network with threshold firing and activity-dependent synapse strenghts. The system exhibits an avalanche activity power law distributed. The analysis of the power spectra of the electrical signal reproduces very robustly the power law behaviour with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.Comment: 4 pages, 3 figure

    Integrated random processes exhibiting long tails, finite moments and 1/f spectra

    Get PDF
    A dynamical model based on a continuous addition of colored shot noises is presented. The resulting process is colored and non-Gaussian. A general expression for the characteristic function of the process is obtained, which, after a scaling assumption, takes on a form that is the basis of the results derived in the rest of the paper. One of these is an expansion for the cumulants, which are all finite, subject to mild conditions on the functions defining the process. This is in contrast with the Levy distribution -which can be obtained from our model in certain limits- which has no finite moments. The evaluation of the power spectrum and the form of the probability density function in the tails of the distribution shows that the model exhibits a 1/f spectrum and long tails in a natural way. A careful analysis of the characteristic function shows that it may be separated into a part representing a Levy processes together with another part representing the deviation of our model from the Levy process. This allows our process to be viewed as a generalization of the Levy process which has finite moments.Comment: Revtex (aps), 15 pages, no figures. Submitted to Phys. Rev.

    Non-equilibrium dynamics of stochastic point processes with refractoriness

    Full text link
    Stochastic point processes with refractoriness appear frequently in the quantitative analysis of physical and biological systems, such as the generation of action potentials by nerve cells, the release and reuptake of vesicles at a synapse, and the counting of particles by detector devices. Here we present an extension of renewal theory to describe ensembles of point processes with time varying input. This is made possible by a representation in terms of occupation numbers of two states: Active and refractory. The dynamics of these occupation numbers follows a distributed delay differential equation. In particular, our theory enables us to uncover the effect of refractoriness on the time-dependent rate of an ensemble of encoding point processes in response to modulation of the input. We present exact solutions that demonstrate generic features, such as stochastic transients and oscillations in the step response as well as resonances, phase jumps and frequency doubling in the transfer of periodic signals. We show that a large class of renewal processes can indeed be regarded as special cases of the model we analyze. Hence our approach represents a widely applicable framework to define and analyze non-stationary renewal processes.Comment: 8 pages, 4 figure

    Liquid-liquid equilibrium for monodisperse spherical particles

    Full text link
    A system of identical particles interacting through an isotropic potential that allows for two preferred interparticle distances is numerically studied. When the parameters of the interaction potential are adequately chosen, the system exhibits coexistence between two different liquid phases (in addition to the usual liquid-gas coexistence). It is shown that this coexistence can occur at equilibrium, namely, in the region where the liquid is thermodynamically stable.Comment: 6 pages, 8 figures. Published versio

    Curve counting via stable pairs in the derived category

    Full text link
    For a nonsingular projective 3-fold XX, we define integer invariants virtually enumerating pairs (C,D)(C,D) where CXC\subset X is an embedded curve and DCD\subset C is a divisor. A virtual class is constructed on the associated moduli space by viewing a pair as an object in the derived category of XX. The resulting invariants are conjecturally equivalent, after universal transformations, to both the Gromov-Witten and DT theories of XX. For Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing formula in the derived category. Several calculations of the new invariants are carried out. In the Fano case, the local contributions of nonsingular embedded curves are found. In the local toric Calabi-Yau case, a completely new form of the topological vertex is described. The virtual enumeration of pairs is closely related to the geometry underlying the BPS state counts of Gopakumar and Vafa. We prove that our integrality predictions for Gromov-Witten invariants agree with the BPS integrality. Conversely, the BPS geometry imposes strong conditions on the enumeration of pairs.Comment: Corrected typos and duality error in Proposition 4.6. 47 page
    corecore