8,101 research outputs found

    Block-Structured Supermarket Models

    Full text link
    Supermarket models are a class of parallel queueing networks with an adaptive control scheme that play a key role in the study of resource management of, such as, computer networks, manufacturing systems and transportation networks. When the arrival processes are non-Poisson and the service times are non-exponential, analysis of such a supermarket model is always limited, interesting, and challenging. This paper describes a supermarket model with non-Poisson inputs: Markovian Arrival Processes (MAPs) and with non-exponential service times: Phase-type (PH) distributions, and provides a generalized matrix-analytic method which is first combined with the operator semigroup and the mean-field limit. When discussing such a more general supermarket model, this paper makes some new results and advances as follows: (1) Providing a detailed probability analysis for setting up an infinite-dimensional system of differential vector equations satisfied by the expected fraction vector, where "the invariance of environment factors" is given as an important result. (2) Introducing the phase-type structure to the operator semigroup and to the mean-field limit, and a Lipschitz condition can be obtained by means of a unified matrix-differential algorithm. (3) The matrix-analytic method is used to compute the fixed point which leads to performance computation of this system. Finally, we use some numerical examples to illustrate how the performance measures of this supermarket model depend on the non-Poisson inputs and on the non-exponential service times. Thus the results of this paper give new highlight on understanding influence of non-Poisson inputs and of non-exponential service times on performance measures of more general supermarket models.Comment: 65 pages; 7 figure

    Boosting Information Spread: An Algorithmic Approach

    Full text link
    The majority of influence maximization (IM) studies focus on targeting influential seeders to trigger substantial information spread in social networks. In this paper, we consider a new and complementary problem of how to further increase the influence spread of given seeders. Our study is motivated by the observation that direct incentives could "boost" users so that they are more likely to be influenced by friends. We study the kk-boosting problem which aims to find kk users to boost so that the final "boosted" influence spread is maximized. The kk-boosting problem is different from the IM problem because boosted users behave differently from seeders: boosted users are initially uninfluenced and we only increase their probability to be influenced. Our work also complements the IM studies because we focus on triggering larger influence spread on the basis of given seeders. Both the NP-hardness of the problem and the non-submodularity of the objective function pose challenges to the kk-boosting problem. To tackle the problem on general graphs, we devise two efficient algorithms with the data-dependent approximation ratio. For the kk-boosting problem on bidirected trees, we present an efficient greedy algorithm and a rounded dynamic programming that is a fully polynomial-time approximation scheme. We conduct extensive experiments using real social networks and synthetic bidirected trees. We show that boosting solutions returned by our algorithms achieves boosts of influence that are up to several times higher than those achieved by boosting solutions returned by intuitive baselines, which have no guarantee of solution quality. We also explore the "budget allocation" problem in our experiments. Compared with targeting seeders with all budget, larger influence spread is achieved when we allocation the budget to both seeders and boosted users

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page

    Mathematical Modeling of Product Rating: Sufficiency, Misbehavior and Aggregation Rules

    Full text link
    Many web services like eBay, Tripadvisor, Epinions, etc, provide historical product ratings so that users can evaluate the quality of products. Product ratings are important since they affect how well a product will be adopted by the market. The challenge is that we only have {\em "partial information"} on these ratings: Each user provides ratings to only a "{\em small subset of products}". Under this partial information setting, we explore a number of fundamental questions: What is the "{\em minimum number of ratings}" a product needs so one can make a reliable evaluation of its quality? How users' {\em misbehavior} (such as {\em cheating}) in product rating may affect the evaluation result? To answer these questions, we present a formal mathematical model of product evaluation based on partial information. We derive theoretical bounds on the minimum number of ratings needed to produce a reliable indicator of a product's quality. We also extend our model to accommodate users' misbehavior in product rating. We carry out experiments using both synthetic and real-world data (from TripAdvisor, Amazon and eBay) to validate our model, and also show that using the "majority rating rule" to aggregate product ratings, it produces more reliable and robust product evaluation results than the "average rating rule".Comment: 33 page

    Stochastic Modeling of Hybrid Cache Systems

    Full text link
    In recent years, there is an increasing demand of big memory systems so to perform large scale data analytics. Since DRAM memories are expensive, some researchers are suggesting to use other memory systems such as non-volatile memory (NVM) technology to build large-memory computing systems. However, whether the NVM technology can be a viable alternative (either economically and technically) to DRAM remains an open question. To answer this question, it is important to consider how to design a memory system from a "system perspective", that is, incorporating different performance characteristics and price ratios from hybrid memory devices. This paper presents an analytical model of a "hybrid page cache system" so to understand the diverse design space and performance impact of a hybrid cache system. We consider (1) various architectural choices, (2) design strategies, and (3) configuration of different memory devices. Using this model, we provide guidelines on how to design hybrid page cache to reach a good trade-off between high system throughput (in I/O per sec or IOPS) and fast cache reactivity which is defined by the time to fill the cache. We also show how one can configure the DRAM capacity and NVM capacity under a fixed budget. We pick PCM as an example for NVM and conduct numerical analysis. Our analysis indicates that incorporating PCM in a page cache system significantly improves the system performance, and it also shows larger benefit to allocate more PCM in page cache in some cases. Besides, for the common setting of performance-price ratio of PCM, "flat architecture" offers as a better choice, but "layered architecture" outperforms if PCM write performance can be significantly improved in the future.Comment: 14 pages; mascots 201
    corecore