10,362 research outputs found

    Multimode optomechanical system in the quantum regime

    Full text link
    We realise a simple and robust optomechanical system with a multitude of long-lived (Q>107Q>10^7) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate (96 kHz96~\mathrm{kHz}) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10K10\,\mathrm{K}). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths 90kHz\lesssim 90\,\mathrm{ kHz}. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.Comment: 19 pages, 9 figure

    Geometric phases in open tripod systems

    Full text link
    We first consider stimulated Raman adibatic passages (STIRAP) in a closed four-level tripod system. In this case, the adiabatic eigenstates of the system acquire real geometric phases. When the system is open and subject to decoherence they acquire complex geometric phases that we determine by a Monte Carlo wave function approach. We calculate the geometric phases and the state evolution in the closed as well as in the open system cases and describe the deviation between these in terms of the phases acquired. When the system is closed, the adiabatic evolution implements a Hadamard gate. The open system implements an imperfect gate and hence has a fidelity below unity. We express this fidelity in terms of the acquired geometric phases.Comment: 10 pages 7 figure

    The evolution of field early-type galaxies to z~0.7

    Get PDF
    We have measured the Fundamental Plane (FP) parameters for a sample of 30 field early-type galaxies (E/S0) in the redshift range 0.1<z<0.66. We find that: i) the FP is defined and tight out to the highest redshift bin; ii) the intercept \gamma evolves as d\gamma/dz=0.58+0.09-0.13 (for \Omega=0.3, \Omega_{\Lambda}=0.7), or, in terms of average effective mass to light ratio, as d\log(M/L_B)/dz=-0.72+0.11-0.16, i.e. faster than is observed for cluster E/S0 -0.49+-0.05. In addition, we detect [OII] emission >5\AA in 22% of an enlarged sample of 42 massive E/S0 in the range 0.1<z<0.73, in contrast with the quiescent population observed in clusters at similar z. We interpret these findings as evidence that a significant fraction of massive field E/S0 experiences secondary episodes of star-formation at z<1.Comment: ApJ Letters, in pres

    Note on clock synchronization and Edwards transformations

    Full text link
    Edwards transformations relating inertial frames with arbitrary clock synchronization are reminded and put in more general setting. Their group theoretical context is described.Comment: 11 pages, no figures; final version, to appear in Foundations of Physics Letter

    The Energy Operator for a Model with a Multiparametric Infinite Statistics

    Full text link
    In this paper we consider energy operator (a free Hamiltonian), in the second-quantized approach, for the multiparameter quon algebras: aiajqijajai=δij,i,jIa_{i}a_{j}^{\dagger}-q_{ij}a_{j}^{\dagger}a_{i} = \delta_{ij}, i,j\in I with (qij)i,jI(q_{ij})_{i,j\in I} any hermitian matrix of deformation parameters. We obtain an elegant formula for normally ordered (sometimes called Wick-ordered) series expansions of number operators (which determine a free Hamiltonian). As a main result (see Theorem 1) we prove that the number operators are given, with respect to a basis formed by "generalized Lie elements", by certain normally ordered quadratic expressions with coefficients given precisely by the entries of the inverses of Gram matrices of multiparticle weight spaces. (This settles a conjecture of two of the authors (S.M and A.P), stated in [8]). These Gram matrices are hermitian generalizations of the Varchenko's matrices, associated to a quantum (symmetric) bilinear form of diagonal arrangements of hyperplanes (see [12]). The solution of the inversion problem of such matrices in [9] (Theorem 2.2.17), leads to an effective formula for the number operators studied in this paper. The one parameter case, in the monomial basis, was studied by Zagier [15], Stanciu [11] and M{\o}ller [6].Comment: 24 pages. accepted in J. Phys. A. Math. Ge

    Deformed Hartree-Fock Calculation of Proton-Rich Nuclei

    Get PDF
    We perform Hartree-Fock+BCS calculations for even-even nuclei with 2 <= Z <= 82 and N ranging from outside the proton drip line to the experimental frontier on the neutron-rich side. The ground state solutions are obtained for 737 nuclei, together with shape-coexistence solutions for 480 nuclei. Our method features the Cartesian-mesh representation of single-particle wavefunctions, which is advantageous in treating nucleon skins and exotic shapes. The results are compared with those of the finite-range droplet model of Moller et al. as well as the experimental values.Comment: 7 pages Latex, 5 postscript figures appended as uufil
    corecore