474,083 research outputs found
Non-universal size dependence of the free energy of confined systems near criticality
The singular part of the finite-size free energy density of the O(n)
symmetric field theory in the large-n limit is calculated at finite
cutoff for confined geometries of linear size L with periodic boundary
conditions in 2 < d < 4 dimensions. We find that a sharp cutoff
causes a non-universal leading size dependence
near which dominates the universal scaling term . This
implies a non-universal critical Casimir effect at and a leading
non-scaling term of the finite-size specific heat above .Comment: RevTex, 4 page
Bound states of the Klein-Gordon equation for vector and scalar general Hulthen-type potentials in D-dimension
We solve the Klein-Gordon equation in any -dimension for the scalar and
vector general Hulth\'{e}n-type potentials with any by using an
approximation scheme for the centrifugal potential. Nikiforov-Uvarov method is
used in the calculations. We obtain the bound state energy eigenvalues and the
corresponding eigenfunctions of spin-zero particles in terms of Jacobi
polynomials. The eigenfunctions are physical and the energy eigenvalues are in
good agreement with those results obtained by other methods for D=1 and 3
dimensions. Our results are valid for value when and for any
value when and D=1 or 3. The % -wave () binding energies for
a particle of rest mass are calculated for the three lower-lying
states using pure vector and pure scalar potentials.Comment: 25 page
Non-adiabatic Fast Control of Mixed States based on Lewis-Riesenfeld Invariant
We apply the inversely-engineered control method based on Lewis-Riesenfeld
invariants to control mixed states of a two-level quantum system. We show that
the inversely-engineered control passages of mixed states - and pure states as
special cases - can be made significantly faster than the conventional
adiabatic control passages, which renders the method applicable to quantum
computation. We devise a new type of inversely-engineered control passages, to
be coined the antedated control passages, which further speed up the control
significantly. We also demonstrate that by carefully tuning the control
parameters, the inversely-engineered control passages can be optimized in terms
of speed and energy cost.Comment: 9 pages, 9 figures, version to appear in J. Phys. Soc. Jp
Characterization of the 4-canonical birationality of algebraic threefolds
In this article we present a 3-dimensional analogue of a well-known theorem
of E. Bombieri (in 1973) which characterizes the bi-canonical birationality of
surfaces of general type. Let be a projective minimal 3-fold of general
type with -factorial terminal singularities and the geometric genus
. We show that the 4-canonical map is {\it not}
birational onto its image if and only if is birationally fibred by a family
of irreducible curves of geometric genus 2 with
where is a general irreducible member in .Comment: 25 pages, to appear in Mathematische Zeitschrif
Magnetic Jam in the Corona of the Sun
The outer solar atmosphere, the corona, contains plasma at temperatures of
more than a million K, more than 100 times hotter that solar surface. How this
gas is heated is a fundamental question tightly interwoven with the structure
of the magnetic field in the upper atmosphere. Conducting numerical experiments
based on magnetohydrodynamics we account for both the evolving
three-dimensional structure of the atmosphere and the complex interaction of
magnetic field and plasma. Together this defines the formation and evolution of
coronal loops, the basic building block prominently seen in X-rays and extreme
ultraviolet (EUV) images. The structures seen as coronal loops in the EUV can
evolve quite differently from the magnetic field. While the magnetic field
continuously expands as new magnetic flux emerges through the solar surface,
the plasma gets heated on successively emerging fieldlines creating an EUV loop
that remains roughly at the same place. For each snapshot the EUV images
outline the magnetic field, but in contrast to the traditional view, the
temporal evolution of the magnetic field and the EUV loops can be different.
Through this we show that the thermal and the magnetic evolution in the outer
atmosphere of a cool star has to be treated together, and cannot be simply
separated as done mostly so far.Comment: Final version published online on 27 April 2015, Nature Physics 12
pages and 8 figure
A model for the formation of the active region corona driven by magnetic flux emergence
We present the first model that couples the formation of the corona of a
solar active region to a model of the emergence of a sunspot pair. This allows
us to study when, where, and why active region loops form, and how they evolve.
We use a 3D radiation MHD simulation of the emergence of an active region
through the upper convection zone and the photosphere as a lower boundary for a
3D MHD coronal model. The latter accounts for the braiding of the magnetic
fieldlines, which induces currents in the corona heating up the plasma. We
synthesize the coronal emission for a direct comparison to observations.
Starting with a basically field-free atmosphere we follow the filling of the
corona with magnetic field and plasma. Numerous individually identifiable hot
coronal loops form, and reach temperatures well above 1 MK with densities
comparable to observations. The footpoints of these loops are found where small
patches of magnetic flux concentrations move into the sunspots. The loop
formation is triggered by an increase of upwards-directed Poynting flux at
their footpoints in the photosphere. In the synthesized EUV emission these
loops develop within a few minutes. The first EUV loop appears as a thin tube,
then rises and expands significantly in the horizontal direction. Later, the
spatially inhomogeneous heat input leads to a fragmented system of multiple
loops or strands in a growing envelope.Comment: 13 pages, 10 figures, accepted to publication in A&
Top Partners and Higgs Boson Production
The Higgs boson is produced at the LHC through gluon fusion at roughly the
Standard Model rate. New colored fermions, which can contribute to
, must have vector-like interactions in order not to be in
conflict with the experimentally measured rate. We examine the size of the
corrections to single and double Higgs production from heavy vector-like
fermions in singlets and doublets and search for regions of parameter
space where double Higgs production is enhanced relative to the Standard Model
prediction. We compare production rates and distributions for double Higgs
production from gluon fusion using an exact calculation, the low energy theorem
(LET), where the top quark and the heavy vector-like fermions are taken to be
infinitely massive, and an effective theory (EFT) where top mass effects are
included exactly and the effects of the heavy fermions are included to . Unlike the LET, the EFT gives an extremely accurate description
of the kinematic distributions for double Higgs production.Comment: 37 pages, 11 figures. Minor changes to Figs. 8-1
Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments
We present direct time- and space- resolved measurements of the electron
density of femtosecond laser pulse-induced plasma filaments. The dominant
nonlinearity responsible for extended atmospheric filaments is shown to be
field-induced rotation of air molecules.Comment: 12 pages, 5 figure
- …
