5,623 research outputs found
Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors
A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code
Positive practices : solution-focused and narrative therapeutic techniques with children with sexually harmful behaviours
This article explores the use of solution-focused and Narrative Therapeutic approaches with a boy who had sexually harmful behaviours. The paper will highlight the practical challenges of working with someone who is 'problem-saturated' through institutionalisation and who is also subjected to powerful discourses claiming the 'truth' about him. The use of solution-focused and Narrative Therapeutic principles and approaches will be demonstrated in the work described, in a way that allows the reader to reflect on how these may differ from modernist understandings and responses to this behaviour
Giant gravitons in AdS/CFT (I): matrix model and back reaction
In this article we study giant gravitons in the framework of AdS/CFT
correspondence. First, we show how to describe these configurations in the CFT
side using a matrix model. In this picture, giant gravitons are realized as
single excitations high above a Fermi sea, or as deep holes into it. Then, we
give a prescription to define quasi-classical states and we recover the known
classical solution associated to the CFT dual of a giant graviton that grows in
AdS. Second, we use the AdS/CFT dictionary to obtain the supergravity boundary
stress tensor of a general state and to holographically reconstruct the bulk
metric, obtaining the back reaction of space-time. We find that the space-time
response to all the supersymmetric giant graviton states is of the same form,
producing the singular BPS limit of the three charge Reissner-Nordstr\"om-AdS
black holes. While computing the boundary stress tensor, we comment on the
finite counterterm recently introduced by Liu and Sabra, and connect it to a
scheme-dependent conformal anomaly.Comment: 28 pages, JHEP3 class. v2: typos corrected and references adde
Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid
Sub-Nyquist time frequency packing technique was demonstrated for the first
time in a super channel field trial transmission over long-haul distances. The
technique allows a limited spectral occupancy even with low order modulation
formats. The transmission was successfully performed on a deployed Australian
link between Sydney and Melbourne which included 995 km of uncompensated SMF
with coexistent traffic. 40 and 100 Gb/s co-propagating channels were
transmitted together with the super-channel in a 50 GHz ITU-T grid without
additional penalty. The super-channel consisted of eight sub-channels with
low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness
and reduced complexity with respect to higher order formats. At the receiver
side, coherent detection was used together with iterative maximum-a-posteriori
(MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully
transmitted between Sydney and Melbourne within four 50GHz WSS channels (200
GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8
dB, comparable to the OSNR of the installed 100 Gb/s channels. The system
reliability was proven through long term measurements. In addition, by closing
the link in a loop back configuration, a potential SE*d product of 9254
bit/s/Hz*km was achieved
Chiral Behaviour of the Rho Meson in Lattice QCD
In order to guide the extrapolation of the mass of the rho meson calculated
in lattice QCD with dynamical fermions, we study the contributions to its
self-energy which vary most rapidly as the quark mass approaches zero; from the
processes and . It turns out that in
analysing the most recent data from CP-PACS it is crucial to estimate the
self-energy from using the same grid of discrete momenta as
included implicitly in the lattice simulation. The correction associated with
the continuum, infinite volume limit can then be found by calculating the
corresponding integrals exactly. Our error analysis suggests that a factor of
10 improvement in statistics at the lowest quark mass for which data currently
exists would allow one to determine the physical rho mass to within 5%.
Finally, our analysis throws new light on a long-standing problem with the
J-parameter.Comment: 13 pages, 7 figures. Full analytic forms of the self-energies are
included and a correction in the omega-pi self-energ
D-branes in T-fold conformal field theory
We investigate boundary dynamics of orbifold conformal field theory involving
T-duality twists. Such models typically appear in contexts of non-geometric
string compactifications that are called monodrofolds or T-folds in recent
literature. We use the framework of boundary conformal field theory to analyse
the models from a microscopic world-sheet perspective. In these backgrounds
there are two kinds of D-branes that are analogous to bulk and fractional
branes in standard orbifold models. The bulk D-branes in T-folds allow
intuitive geometrical interpretations and are consistent with the classical
analysis based on the doubled torus formalism. The fractional branes, on the
other hand, are `non-geometric' at any point in the moduli space and their
geometric counterparts seem to be missing in the doubled torus analysis. We
compute cylinder amplitudes between the bulk and fractional branes, and find
that the lightest modes of the open string spectra show intriguing non-linear
dependence on the moduli (location of the brane or value of the Wilson line),
suggesting that the physics of T-folds, when D-branes are involved, could
deviate from geometric backgrounds even at low energies. We also extend our
analysis to the models with SU(2) WZW fibre at arbitrary levels.Comment: 38 pages, no figure, ams packages. Essentially the published versio
Modified (A)dS Schwarzschild black holes in Rainbow spacetime
A modified (Anti-)de Sitter Schwarzschild black hole solution is presented in
the framework of rainbow gravity with a cosmological constant. Its
thermodynamical properties are investigated. In general the temperature of
modified black holes is dependent on the energy of probes which take the
measurement. However, a notion of intrinsic temperature can be introduced by
identifying these probes with radiation particles emitted from black holes. It
is interesting to find that the Hawking temperature of this sort of black holes
can be reproduced by employing the extended uncertainty principle and modified
dispersion relations to the ordinary (A)dS Schwarzschild black holes.Comment: 11 pages. The version to appear in CQ
Gad65 is recognized by t-cells, but not by antibodies from nod-mice
Since the 64kDa-protein glutamic acid decarboxylase (GAD) is one of the major autoantigens in T-cell mediated Type 1 diabetes, its relevance as a T-cell antigen needs to be clarified. After isolation of splenic T-cells from non-obese diabetic (NOD) mice, a useful model for human Type 1 diabetes, we found that these T-cells proliferate spontaneously when incubated with human GAD65, but only marginally after incubation with GAD67, both recombinated in the baculovirus system. No effect was observed with non-diabetic NOD mice or with T-cells from H-2 identical NON-NOD-H-2g7 control mice. It has been published previously that NOD mice develop autoantibodies against a 64kDa protein detected with mouse beta cells. In immunoprecipitation experiments with sera from the same NOD mice and 33S-methionine-labelled GAD, no autoantibody binding could be detected. We conclude firstly that GAD65 is an important T-cell antigen which is relevant early in the development of Type 1 diabetes and secondly that there is an antigenic epitope in the human GAD65 molecule recognized by NOD T-cells, but not by NOD autoantibodies precipitating conformational epitopes. Our results therefore provide further evidence that GAD65 is a T-cell antigen in NOD mice, being possibly also involved in very early processes leading to the development of human Type 1 diabetes
Measuring diet in primary school children aged 8-11 years: validation of the Child and Diet Evaluation Tool (CADET) with an emphasis on fruit and vegetable intake.
Background/Objectives:The Child And Diet Evaluation Tool (CADET) is a 24-h food diary that measures the nutrition intake of children aged 3-7 years, with a focus on fruit and vegetable consumption. Until now CADET has not been used to measure nutrient intake of children aged 8-11 years. To ensure that newly assigned portion sizes for this older age group were valid, participants were asked to complete the CADET diary (the school and home food diary) concurrently with a 1-day weighed record. Subjects/Methods:A total of 67 children with a mean age of 9.3 years (s.d.: ± 1.4, 51% girls) participated in the study. Total fruit and vegetable intake in grams and other nutrients were extracted to compare the mean intakes from the CADET diary and Weighed record using t-tests and Pearson's r correlations. Bland-Altman analysis was also conducted to assess the agreement between the two methods. Results: Correlations comparing the CADET diary to the weighed record were high for fruit, vegetables and combined fruit and vegetables (r=0.7). The results from the Bland-Altman plots revealed a mean difference of 54 g (95% confidence interval: -88, 152) for combined fruit and vegetables intake. CADET is the only tool recommended by the National Obesity Observatory that has been validated in a UK population and provides nutrient level data on children's diets. Conclusions:The results from this study conclude that CADET can provide high-quality nutrient data suitable for evaluating intervention studies now for children aged 3-11 years with a focus on fruit and vegetable intake
On the complexity of color-avoiding site and bond percolation
The mathematical analysis of robustness and error-tolerance of complex
networks has been in the center of research interest. On the other hand, little
work has been done when the attack-tolerance of the vertices or edges are not
independent but certain classes of vertices or edges share a mutual
vulnerability. In this study, we consider a graph and we assign colors to the
vertices or edges, where the color-classes correspond to the shared
vulnerabilities. An important problem is to find robustly connected vertex
sets: nodes that remain connected to each other by paths providing any type of
error (i.e. erasing any vertices or edges of the given color). This is also
known as color-avoiding percolation. In this paper, we study various possible
modeling approaches of shared vulnerabilities, we analyze the computational
complexity of finding the robustly (color-avoiding) connected components. We
find that the presented approaches differ significantly regarding their
complexity.Comment: 14 page
- …
