1,122 research outputs found
Richness-abundance relationships for zooplankton in ballast water: temperate versus Arctic comparisons
Species richness and abundance are two commonly measured parameters used to characterize invasion risk associated with transport vectors, especially those capable of transferring large species assemblages. Understanding the relationship between these two variables can further improve our ability to predict future invasions by identifying conditions where high-risk (i.e. species-rich or high abundance or both) and low-risk (i.e. species-poor and low abundance) introduction events are expected. While ballast water is one of the best characterized transport vectors of aquatic non-indigenous species, very few studies have assessed its magnitude at high latitudes. We assessed the arrival potential of zooplankton via ballast water in the Canadian Arctic by examining species richness, total abundance, and the relationship between the two parameters for zooplankton in ships from Europe destined for the Arctic, in comparison with the same parameters for ships bound for Atlantic Canada and the Great Lakes. In addition, we examined whether species richness and/or total abundance were influenced by temperature change and/or ballast water age for each shipping route. We found that species richness and total abundance for Arctic and Great Lakes ships were significantly lower than those for Atlantic ships. Differences in species richness and total abundance for ships utilizing different shipping routes were mostly related to ballast water age. A significant species richness–total abundance relationship for Arctic and Great Lakes ships suggests that these parameters decreased proportionately as ballast water aged. In contrast, the absence of such a relationship for Atlantic ships suggests that decreases in total abundance were accompanied by little to no reduction in species richness. Collectively, our results indicate that the arrival potential of zooplankton in ballast water of Arctic ships may be lower than or similar to that of Atlantic and Great Lakes ships, respectively
Recommended from our members
The biological embedding of early-life socioeconomic status and family adversity in children's genome-wide DNA methylation.
AimTo examine variation in child DNA methylation to assess its potential as a pathway for effects of childhood social adversity on health across the life course.Materials & methodsIn a diverse, prospective community sample of 178 kindergarten children, associations between three types of social experience and DNA methylation within buccal epithelial cells later in childhood were examined.ResultsFamily income, parental education and family psychosocial adversity each associated with increased or decreased DNA methylation (488, 354 and 102 sites, respectively) within a unique set of genomic CpG sites. Gene ontology analyses pointed to genes serving immune and developmental regulation functions.ConclusionFindings provided support for DNA methylation as a biomarker linking early-life social experiences with later life health in humans
Striped periodic minimizers of a two-dimensional model for martensitic phase transitions
In this paper we consider a simplified two-dimensional scalar model for the
formation of mesoscopic domain patterns in martensitic shape-memory alloys at
the interface between a region occupied by the parent (austenite) phase and a
region occupied by the product (martensite) phase, which can occur in two
variants (twins). The model, first proposed by Kohn and Mueller, is defined by
the following functional: where
is periodic in and almost everywhere.
Conti proved that if then the minimal specific
energy scales like ,
as . In the regime , we improve Conti's results, by computing exactly the
minimal energy and by proving that minimizers are periodic one-dimensional
sawtooth functions.Comment: 29 pages, 3 figure
Aging in a Two-Dimensional Ising Model with Dipolar Interactions
Aging in a two-dimensional Ising spin model with both ferromagnetic exchange
and antiferromagnetic dipolar interactions is established and investigated via
Monte Carlo simulations. The behaviour of the autocorrelation function
is analyzed for different values of the temperature, the waiting
time and the quotient , and being the
strength of exchange and dipolar interactions respectively. Different
behaviours are encountered for at low temperatures as is
varied. Our results show that, depending on the value of , the dynamics
of this non-disordered model is consistent either with a slow domain dynamics
characteristic of ferromagnets or with an activated scenario, like that
proposed for spin glasses.Comment: 4 pages, RevTex, 5 postscript figures; acknowledgment added and some
grammatical corrections in caption
Dipolar interaction between two-dimensional magnetic particles
We determine the effective dipolar interaction between single domain
two-dimensional ferromagnetic particles (islands or dots), taking into account
their finite size. The first correction term decays as 1/D^5, where D is the
distance between particles. If the particles are arranged in a regular
two-dimensional array and are magnetized in plane, we show that the correction
term reinforces the antiferromagnetic character of the ground state in a square
lattice, and the ferromagnetic one in a triangular lattice. We also determine
the dipolar spin-wave spectrum and evaluate how the Curie temperature of an
ensemble of magnetic particles scales with the parameters defining the particle
array: height and size of each particle, and interparticle distance. Our
results show that dipolar coupling between particles might induce ferromagnetic
long range order at experimentally relevant temperatures. However, depending on
the size of the particles, such a collective phenomenon may be disguised by
superparamagnetism.Comment: 11 pages, 5 figure
Reorientation transition of ultrathin ferromagnetic films
We demonstrate that the reorientation transition from out-of-plane to
in-plane magnetization with decreasing temperature as observed experimentally
in Ni-films on Cu(001) can be explained on a microscopic basis. Using a
combination of mean field theory and perturbation theory, we derive an analytic
expression for the temperature dependent anisotropy. The reduced magnetization
in the film surface at finite temperatures plays a crucial role for this
transition as with increasing temperature the influence of the uniaxial
anisotropies is reduced at the surface and is enhanced inside the film.Comment: 4 pages(RevTeX), 3 figures (EPS
New Dynamic Monte Carlo Renormalization Group Method
The dynamical critical exponent of the two-dimensional spin-flip Ising model
is evaluated by a Monte Carlo renormalization group method involving a
transformation in time. The results agree very well with a finite-size scaling
analysis performed on the same data. The value of is
obtained, which is consistent with most recent estimates
Ferromagnetism and Temperature-Driven Reorientation Transition in Thin Itinerant-Electron Films
The temperature-driven reorientation transition which, up to now, has been
studied by use of Heisenberg-type models only, is investigated within an
itinerant-electron model. We consider the Hubbard model for a thin fcc(100)
film together with the dipole interaction and a layer-dependent anisotropy
field. The isotropic part of the model is treated by use of a generalization of
the spectral-density approach to the film geometry. The magnetic properties of
the film are investigated as a function of temperature and film thickness and
are analyzed in detail with help of the spin- and layer-dependent quasiparticle
density of states. By calculating the temperature dependence of the
second-order anisotropy constants we find that both types of reorientation
transitions, from out-of-plane to in-plane (``Fe-type'') and from in-plane to
out-of-plane (``Ni-type'') magnetization are possible within our model. In the
latter case the inclusion of a positive volume anisotropy is vital. The
reorientation transition is mediated by a strong reduction of the surface
magnetization with respect to the inner layers as a function of temperature and
is found to depend significantly on the total band occupation.Comment: 10 pages, 8 figures included (eps), Phys Rev B in pres
Magnetic Properties of 2-Dimensional Dipolar Squares: Boundary Geometry Dependence
By means of the molecular dynamics simulation on gradual cooling processes,
we investigate magnetic properties of classical spin systems only with the
magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on
their finite-size effect, particularly their boundary geometry dependence, we
study two finite dipolar squares cut out from a square lattice with
and , where is an angle between the direction of the lattice axis
and that of the square boundary. Distinctly different results are obtained in
the two dipolar squares. In the square, the ``from-edge-to-interior
freezing'' of spins is observed. Its ground state has a multi-domain structure
whose domains consist of the two among infinitely (continuously) degenerated
Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the
two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed
in parallel to the two lattice axes. In the square, on the other
hand, the freezing starts from the interior of the square, and its ground state
is nearly in a single domain with one of the two af-FMC orders. These geometry
effects are argued to originate from the anisotropic nature of the
dipole-dipole interaction which depends on the relative direction of sites in a
real space of the interacting spins.Comment: 21 pages, 13 figures, submitted to Journal of Physical Society Japa
- …
