498 research outputs found

    Algebra Structures on Hom(C,L)

    Get PDF
    We consider the space of linear maps from a coassociative coalgebra C into a Lie algebra L. Unless C has a cocommutative coproduct, the usual symmetry properties of the induced bracket on Hom(C,L) fail to hold. We define the concept of twisted domain (TD) algebras in order to recover the symmetries and also construct a modified Chevalley-Eilenberg complex in order to define the cohomology of such algebras

    2-Vector Spaces and Groupoids

    Full text link
    This paper describes a relationship between essentially finite groupoids and 2-vector spaces. In particular, we show to construct 2-vector spaces of Vect-valued presheaves on such groupoids. We define 2-linear maps corresponding to functors between groupoids in both a covariant and contravariant way, which are ambidextrous adjoints. This is used to construct a representation--a weak functor--from Span(Gpd) (the bicategory of groupoids and spans of groupoids) into 2Vect. In this paper we prove this and give the construction in detail.Comment: 44 pages, 5 figures - v2 adds new theorem, significant changes to proofs, new sectio

    Open-closed TQFTs extend Khovanov homology from links to tangles

    Full text link
    We use a special kind of 2-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, in order to extend Khovanov homology from links to arbitrary tangles, not necessarily even. For every plane diagram of an oriented tangle, we construct a chain complex whose homology is invariant under Reidemeister moves. The terms of this chain complex are modules of a suitable algebra A such that there is one action of A or A^op for every boundary point of the tangle. We give examples of such algebras A for which our tangle homology theory reduces to the link homology theories of Khovanov, Lee, and Bar-Natan if it is evaluated for links. As a consequence of the Cardy condition, Khovanov's graded theory can only be extended to tangles if the underlying field has finite characteristic. In all cases in which the algebra A is strongly separable, i.e. for Bar-Natan's theory in any characteristic and for Lee's theory in characteristic other than 2, we also provide the required algebraic operation for the composition of oriented tangles. Just as Khovanov's theory for links can be recovered from Lee's or Bar-Natan's by a suitable spectral sequence, we provide a spectral sequence in order to compute our tangle extension of Khovanov's theory from that of Bar-Natan's or Lee's theory. Thus, we provide a tangle homology theory that is locally computable and still strong enough to recover characteristic p Khovanov homology for links.Comment: 56 pages, LaTeX2e with xypic and pstricks macro

    Full abstraction for fair testing in CCS

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent presheaf semantics and as a concurrent game semantics. It is here proved that a behavioural equivalence induced by this semantics on CCS processes is fully abstract for fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the 'rule of the game'. From any playground, two languages, equipped with labelled transition systems, are derived, as well as a strong, functional bisimulation between them.Comment: 15 pages, to appear in CALCO '13. To appear Lecture notes in computer science (2013

    State sum construction of two-dimensional open-closed Topological Quantum Field Theories

    Full text link
    We present a state sum construction of two-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of Fukuma--Hosono--Kawai from triangulations of conventional two-dimensional cobordisms to those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that have a particular global structure. This construction reveals the topological interpretation of the associative algebra on which the state sum is based, as the vector space that the TQFT assigns to the unit interval. Extending the notion of a two-dimensional TQFT from cobordisms to suitable manifolds with corners therefore makes the relationship between the global description of the TQFT in terms of a functor into the category of vector spaces and the local description in terms of a state sum fully transparent. We also illustrate the state sum construction of an open-closed TQFT with a finite set of D-branes using the example of the groupoid algebra of a finite groupoid.Comment: 33 pages; LaTeX2e with xypic and pstricks macros; v2: typos correcte

    Gr\"obner-Shirshov bases for LL-algebras

    Full text link
    In this paper, we firstly establish Composition-Diamond lemma for Ω\Omega-algebras. We give a Gr\"{o}bner-Shirshov basis of the free LL-algebra as a quotient algebra of a free Ω\Omega-algebra, and then the normal form of the free LL-algebra is obtained. We secondly establish Composition-Diamond lemma for LL-algebras. As applications, we give Gr\"{o}bner-Shirshov bases of the free dialgebra and the free product of two LL-algebras, and then we show four embedding theorems of LL-algebras: 1) Every countably generated LL-algebra can be embedded into a two-generated LL-algebra. 2) Every LL-algebra can be embedded into a simple LL-algebra. 3) Every countably generated LL-algebra over a countable field can be embedded into a simple two-generated LL-algebra. 4) Three arbitrary LL-algebras AA, BB, CC over a field kk can be embedded into a simple LL-algebra generated by BB and CC if kdim(BC)|k|\leq \dim(B*C) and ABC|A|\leq|B*C|, where BCB*C is the free product of BB and CC.Comment: 22 page

    Non-Hausdorff Symmetries of C*-algebras

    Get PDF
    Symmetry groups or groupoids of C*-algebras associated to non-Hausdorff spaces are often non-Hausdorff as well. We describe such symmetries using crossed modules of groupoids. We define actions of crossed modules on C*-algebras and crossed products for such actions, and justify these definitions with some basic general results and examples.Comment: very minor changes. To appear in Math. An

    A classification of 2D fermionic and bosonic topological orders

    Get PDF
    The string-net approach by Levin and Wen, and the local unitary transformation approach by Chen, Gu, and Wen, provide ways to classify topological orders with gappable edge in 2D bosonic systems. The two approaches reveal that the mathematical framework for 2+1D bosonic topological order with gappable edge is closely related to unitary fusion category theory. In this paper, we generalize these systematic descriptions of topological orders to 2D fermion systems. We find a classification of 2+1D fermionic topological orders with gappable edge in terms of the following set of data (Nkij,Fkij,Fjkn,χδijm,αβ,di)(N^{ij}_k, F^{ij}_k, F^{ijm,\alpha\beta}_{jkn,\chi\delta},d_i), that satisfy a set of non-linear algebraic equations. The exactly soluble Hamiltonians can be constructed from the above data on any lattices to realize the corresponding topological orders. When Fkij=0F^{ij}_k=0, our result recovers the previous classification of 2+1D bosonic topological orders with gappable edge.Comment: 19 page 5 figures, RevTeX

    On the fundamental group of the complement of a complex hyperplane arrangement

    Full text link
    We construct two combinatorially equivalent line arrangements in the complex projective plane such that the fundamental groups of their complements are not isomorphic. The proof uses a new invariant of the fundamental group of the complement to a line arrangement of a given combinatorial type with respect to isomorphisms inducing the canonical isomorphism of the first homology groups.Comment: 12 pages, Latex2e with AMSLaTeX 1.2, no figures; this last version is almost the same as published in Functional Analysis and its Applications 45:2 (2011), 137-14

    Mathematical structure of unit systems

    Get PDF
    We investigate the mathematical structure of unit systems and the relations between them. Looking over the entire set of unit systems, we can find a mathematical structure that is called preorder (or quasi-order). For some pair of unit systems, there exists a relation of preorder such that one unit system is transferable to the other unit system. The transfer (or conversion) is possible only when all of the quantities distinguishable in the latter system are always distinguishable in the former system. By utilizing this structure, we can systematically compare the representations in different unit systems. Especially, the equivalence class of unit systems (EUS) plays an important role because the representations of physical quantities and equations are of the same form in unit systems belonging to an EUS. The dimension of quantities is uniquely defined in each EUS. The EUS's form a partially ordered set. Using these mathematical structures, unit systems and EUS's are systematically classified and organized as a hierarchical tree.Comment: 27 pages, 3 figure
    corecore