1,781 research outputs found
Strangeness contribution to the vector and axial form factors of the nucleon
The strangeness contribution to the vector and axial form factors of the
nucleon is presented for momentum transfers in the range
GeV. The results are obtained via a combined analysis of forward-scattering
parity-violating elastic asymmetry data from the and HAPPEx
experiments at Jefferson Lab, and elastic and scattering
data from Experiment 734 at Brookhaven National Laboratory. The
parity-violating asymmetries measured in elastic scattering at
forward angles establish a relationship between the strange vector form factors
and , with little sensitivity to the strange axial form factor
. On the other hand, elastic neutrino scattering at low is
dominated by the axial form factor, with still some significant sensitivity to
the vector form factors as well. The combination of the two data sets allows
the simultaneous extraction of , , and over a significant
range of for the very first time.Comment: 3 pages, 1 figure, will appear in AIP Conference Proceedings for
PANIC 200
A New Correlation Between GRB X-Ray Flares And The Prompt Emission
From a sample of GRBs detected by the and missions, we have
extracted the minimum variability time scales for temporal structures in the
light curves associated with the prompt emission and X-ray flares. A comparison
of this variability time scale with pulse parameters such as rise
times,determined via pulse-fitting procedures, and spectral lags, extracted via
the cross-correlation function (CCF), indicate a tight correlation between
these temporal features for both the X-ray flares and the prompt emission.
These correlations suggests a common origin for the production of X-ray flares
and the prompt emission in GRBs.Comment: 5 pages, 3 figures, Accepted for publication in ApJ
Simulation of transient energy distributions in sub-ns streamer formation
Breakdown and streamer formation is simulated in atmospheric pressure nitrogen for a 2D planar electrode system. A PIC code with multigrid potential solver is used to simulate the evolution of the non-equilibrium ionization front on sub-nanosecond timescales. The ion and electron energy distributions are computed, accounting for the inclusion of inelastic scattering of electrons, and collisionally excited metastable production and ionization. Of particular interest is the increased production of metastable and low-energy ions and electrons when the applied field is reversed during the progress of the ionization front, giving insight into the improved species yields in nanosecond pulsed systems
Gamma-Ray Bursts: Temporal Scales and the Bulk Lorentz Factor
For a sample of Swift and Fermi GRBs, we show that the minimum variability
timescale and the spectral lag of the prompt emission is related to the bulk
Lorentz factor in a complex manner: For small 's, the variability
timescale exhibits a shallow (plateau) region. For large 's, the
variability timescale declines steeply as a function of (). Evidence is also presented for an intriguing
correlation between the peak times, t, of the afterglow emission and the
prompt emission variability timescale.Comment: Accepted for publication in Ap
The evolution of electron overdensities in magnetic fields
When a neutral gas impinges on a stationary magnetized plasma an enhancement in the ionization rate occurs when the neutrals exceed a threshold velocity. This is commonly known as the critical ionization velocity effect. This process has two distinct timescales: an ion–neutral collision time and electron acceleration time. We investigate the energization of an ensemble of electrons by their self-electric field in an applied magnetic field. The evolution of the electrons is simulated under different magnetic field and density conditions. It is found that electrons can be accelerated to speeds capable of electron impact ionization for certain conditions. In the magnetically dominated case the energy distribution of the excited electrons shows that typically 1% of the electron population can exceed the initial electrostatic potential associated with the unbalanced ensemble of electrons
The Hurst Exponent of Fermi GRBs
Using a wavelet decomposition technique, we have extracted the Hurst exponent
for a sample of 46 long and 22 short Gamma-ray bursts (GRBs) detected by the
Gamma-ray Burst Monitor (GBM) aboard the Fermi satellite. This exponent is a
scaling parameter that provides a measure of long-range behavior in a time
series. The mean Hurst exponent for the short GRBs is significantly smaller
than that for the long GRBs. The separation may serve as an unbiased criterion
for distinguishing short and long GRBs.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Societ
An Energy-Minimization Finite-Element Approach for the Frank-Oseen Model of Nematic Liquid Crystals: Continuum and Discrete Analysis
This paper outlines an energy-minimization finite-element approach to the
computational modeling of equilibrium configurations for nematic liquid
crystals under free elastic effects. The method targets minimization of the
system free energy based on the Frank-Oseen free-energy model. Solutions to the
intermediate discretized free elastic linearizations are shown to exist
generally and are unique under certain assumptions. This requires proving
continuity, coercivity, and weak coercivity for the accompanying appropriate
bilinear forms within a mixed finite-element framework. Error analysis
demonstrates that the method constitutes a convergent scheme. Numerical
experiments are performed for problems with a range of physical parameters as
well as simple and patterned boundary conditions. The resulting algorithm
accurately handles heterogeneous constant coefficients and effectively resolves
configurations resulting from complicated boundary conditions relevant in
ongoing research.Comment: 31 pages, 3 figures, 3 table
- …
