143 research outputs found
Two-photon double ionization of neon using an intense attosecond pulse train
We present the first demonstration of two-photon double ionization of neon
using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a
photon energy regime where both direct and sequential mechanisms are allowed.
For an APT generated through high-order harmonic generation (HHG) in argon we
achieve a total pulse energy close to 1 J, a central energy of 35 eV and a
total bandwidth of eV. The APT is focused by broadband optics in a
neon gas target to an intensity of Wcm. By tuning
the photon energy across the threshold for the sequential process the double
ionization signal can be turned on and off, indicating that the two-photon
double ionization predominantly occurs through a sequential process. The
demonstrated performance opens up possibilities for future XUV-XUV pump-probe
experiments with attosecond temporal resolution in a photon energy range where
it is possible to unravel the dynamics behind direct vs. sequential double
ionization and the associated electron correlation effects
Effects of the environment on the uracil molecule ionization induced by 12C4+ ion beam
In this study the fragmentation of isolated uracil molecules, uracil clusters and hydrated uracil clusters induced by 12 C 4+ ions at 36 keV energy has been investigated. The mass spectra obtained by a TOF mass spectrometer are analyzed and compared to each other in order to see how the environment affects the fragmentation dynamics. The main differences between the mass spectra are highlighted and possible fragmentation pathways are proposed
Unusual hydrogen and hydroxyl migration in the fragmentation of excited doubly-positively-charged amino acids in the gas phase
Roadmap on dynamics of molecules and clusters in the gas phase
This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science
Once upon a time, the VANA story based on the review "virion-associated nucleic acid-based metagenomics : a decade of advances in molecular characterization of plant viruses"
Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 25 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2022). Collectively, viruses from 94 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided
- …
