176 research outputs found

    Agile Project Dynamics: A System Dynamics Investigation of Agile Software Development Methods

    Get PDF
    While Agile software development has many advocates, acceptance in the government and defense sectors has been limited. To address questions of meanings to the term “Agile,” we examine a range of Agile methods practiced and develop a framework of seven characteristics, which we call the Agile Genome. We gain insight into the dynamics of how Agile development compares to classic “waterfall” approaches by constructing a System Dynamics model for software projects. The Agile Project Dynamics (APD) model captures each of the Agile genes as a separate component of the model and allows experimentation with combinations of practices and management policies. Experimentation with the APD model is used to explore how different genes work in combination with one another to produce both positive and negative effects. The extensible design of the APD model provides the basis for further study of Agile methods and management practices

    Reasoning about Temporal Context using Ontology and Abductive Constraint Logic Programming

    Get PDF
    The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.Singapore-MIT Alliance (SMA

    Financial Information Mediation: A Case Study of Standards Integration for Electronic Bill Presentment and Payment Using the COIN Mediation Technology

    Get PDF
    Each player in the financial industry, each bank, stock exchange, government agency, or insurance company operates its own financial information system or systems. By its very nature, financial information, like the money that it represents, changes hands. Therefore the interoperation of financial information systems is the cornerstone of the financial services they support. E-services frameworks such as web services are an unprecedented opportunity for the flexible interoperation of financial systems. Naturally the critical economic role and the complexity of financial information led to the development of various standards. Yet standards alone are not the panacea: different groups of players use different standards or different interpretations of the same standard. We believe that the solution lies in the convergence of flexible E-services such as web-services and semantically rich meta-data as promised by the semantic Web; then a mediation architecture can be used for the documentation, identification, and resolution of semantic conflicts arising from the interoperation of heterogeneous financial services. In this paper we illustrate the nature of the problem in the Electronic Bill Presentment and Payment (EBPP) industry and the viability of the solution we propose. We describe and analyze the integration of services using four different formats: the IFX, OFX and SWIFT standards, and an example proprietary format. To accomplish this integration we use the COntext INterchange (COIN) framework. The COIN architecture leverages a model of sources and receivers’ contexts in reference to a rich domain model or ontology for the description and resolution of semantic heterogeneity.Singapore-MIT Alliance (SMA

    Examining the quality and management of non-geometric building information modelling data at project hand-over

    Get PDF
    Through the exponential global increase of Building Information Modelling (BIM) adoption across the Construction industry, and the emergence of inter-connected, strategic and data-rich solutions; such as Big Data, the Internet of Things and Smart Cities, the importance associated with activities and decisions reliant on exact data input, transaction, analysis, and resulting actions becomes exponentially magnified. The supply of inaccurate BIM data may negatively impact on systems and processes that require fully assured data of appropriate quality/veracity, to support informed decision making, deliver functionality, facilitate services, or direct strategic actions within the built environment. This preliminary research intends to provide a catalyst for discussion, analysis and information retrieval relating to Building Information Modelling (BIM) processes where non-geometric data errors may; or are predicted to occur within a project environment. This may result in the delivery of data that cannot be described as representing truth or of good quality, and therefore of little value or use to the data user. The wider aspects of this research investigates specifically non-geometric data veracity & associated dimensions of data quality; in order to discover and explore future solutions to resolve current industry data quality assessment challenges. This paper provides feedback from the research focusing on the current state, presenting existing industry challenges and proposes further research areas based on initial findings
    corecore