1,258 research outputs found

    Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea

    Get PDF
    The Celtic Sea is a productive temperate sea located on the Northwest European Shelf. It is an important pathway for the delivery of land-derived material to the North Atlantic Ocean, including dissolved organic matter (DOM). The aim of this study was to determine the seasonal and spatial variability in the magnitude, source and composition of DOM at three sites representing on shelf, central shelf and shelf edge regions in the Celtic Sea, using observations collected during the UK Shelf Sea Biogeochemistry (SSB) research programme (November 2014 – August 2015). The concentration of dissolved organic carbon (DOC) alongside DOM absorbance and fluorescence indices were measured and fluorescence Excitation and Emission Matrices (EEMs) combined with Parallel Factor Analysis (PARAFAC) were used to assess DOM composition and lability. The PARAFAC model identified four unique fluorescent components for autumn (November 2014), winter (March 2015), spring (April 2015) and summer (July 2015) consisting of two humic-like components attributed to terrestrial (C1) and marine sources (C2), and two protein components identified as tyrosine-like (C3) and tryptophan-like (C4) attributed to in situ production. DOC varied seasonally and there were strong cross shelf trends. The protein components (C3 and C4) exhibited large seasonal and within season variability particularly during productive periods. In contrast, there were persistent cross shelf gradients in the CDOM absorption coefficient at 305 nm (a305), the UV specific absorbance at 280 nm (SUVA280), the humification index (HIX), and the humic-like fluorescent components (C1 and C2), which were higher in the on shelf region and decreased towards the shelf edge. The humic-like components and the slope ratio (SR) were significantly correlated with salinity throughout all seasons, indicating a strong influence of terrestrially-derived organic matter in the Celtic Sea, with potentially up to 35% of DOC in the central shelf during winter originating from terrestrial inputs. Results from this study illustrate the importance of monitoring DOM quantitatively and qualitatively for a better understanding of the supply, production, cycling and export of this dynamic organic carbon pool in shelf seas

    International trends in clinical characteristics and oral anticoagulation treatment for patients with atrial fibrillation: Results from the GARFIELD-AF, ORBIT-AF I, and ORBIT-AF II registries.

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. We aimed to provide comprehensive data on international patterns of AF stroke prevention treatment. METHODS: Demographics, comorbidities, and stroke risk of the patients in the GARFIELD-AF (n=51,270), ORBIT-AF I (n=10,132), and ORBIT-AF II (n=11,602) registries were compared (overall N=73,004 from 35 countries). Stroke prevention therapies were assessed among patients with new-onset AF (≤6 weeks). RESULTS: Patients from GARFIELD-AF were less likely to be white (63% vs 89% for ORBIT-AF I and 86% for ORBIT-AF II) or have coronary artery disease (19% vs 36% and 27%), but had similar stroke risk (85% CHA2DS2-VASc ≥2 vs 91% and 85%) and lower bleeding risk (11% with HAS-BLED ≥3 vs 24% and 15%). Oral anticoagulant use was 46% and 57% for patients with a CHA2DS2-VASc=0 and 69% and 87% for CHA2DS2-VASc ≥2 in GARFIELD-AF and ORBIT-AF II, respectively, but with substantial geographic heterogeneity in use of oral anticoagulant (range: 31%-93% [GARFIELD-AF] and 66%-100% [ORBIT-AF II]). Among patients with new-onset AF, non-vitamin K antagonist oral anticoagulant use increased over time to 43% in 2016 for GARFIELD-AF and 71% for ORBIT-AF II, whereas use of antiplatelet monotherapy decreased from 36% to 17% (GARFIELD-AF) and 18% to 8% (ORBIT-AF I and II). CONCLUSIONS: Among new-onset AF patients, non-vitamin K antagonist oral anticoagulant use has increased and antiplatelet monotherapy has decreased. However, anticoagulation is used frequently in low-risk patients and inconsistently in those at high risk of stroke. Significant geographic variability in anticoagulation persists and represents an opportunity for improvement

    Experimental and Theoretical Investigation into the Effect of the Electron Velocity Distribution on Chaotic Oscillations in an Electron Beam under Virtual Cathode Formation Conditions

    Full text link
    The effect of the electron transverse and longitudinal velocity spread at the entrance to the interaction space on wide-band chaotic oscillations in intense multiple-velocity beams is studied theoretically and numerically under the conditions of formation of a virtual cathode. It is found that an increase in the electron velocity spread causes chaotization of virtual cathode oscillations. An insight into physical processes taking place in a virtual cathode multiple velocity beam is gained by numerical simulation. The chaotization of the oscillations is shown to be associated with additional electron structures, which were separated out by constructing charged particle distribution functions.Comment: 9 pages, 8 figure

    Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    Get PDF
    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.Comment: 12 pages, 8 figure

    Impact of global geographic region on time in therapeutic range on warfarin anticoagulant therapy:data from the ROCKET AF clinical trial

    Get PDF
    Background: Vitamin K antagonist (VKA) therapy remains the most common method of stroke prevention in patients with atrial fibrillation. Time in therapeutic range (TTR) is a widely cited measure of the quality of VKA therapy. We sought to identify factors associated with TTR in a large, international clinical trial. Methods and Results: TTR (international normalized ratio [INR] 2.0 to 3.0) was determined using standard linear interpolation in patients randomized to warfarin in the ROCKET AF trial. Factors associated with TTR at the individual patient level (i‐TTR) were determined via multivariable linear regression. Among 6983 patients taking warfarin, recruited from 45 countries grouped into 7 regions, the mean i‐TTR was 55.2% (SD 21.3%) and the median i‐TTR was 57.9% (interquartile range 43.0% to 70.6%). The mean time with INR 3 was 15.7%. While multiple clinical features were associated with i‐TTR, dominant determinants were previous warfarin use (mean i‐TTR of 61.1% for warfarin‐experienced versus 47.4% in VKA‐naïve patients) and geographic region where patients were managed (mean i‐TTR varied from 64.1% to 35.9%). These effects persisted in multivariable analysis. Regions with the lowest i‐TTRs had INR distributions shifted toward lower INR values and had longer inter‐INR test intervals. Conclusions: Independent of patient clinical features, the regional location of medical care is a dominant determinant of variation in i‐TTR in global studies of warfarin. Regional differences in mean i‐TTR are heavily influenced by subtherapeutic INR values and are associated with reduced frequency of INR testing

    Relationship Between Time in Therapeutic Range and Comparative Treatment Effect of Rivaroxaban and Warfarin: Results From the ROCKET AF Trial

    Get PDF
    Background: Time in therapeutic range (TTR) is a standard quality measure of the use of warfarin. We assessed the relative effects of rivaroxaban versus warfarin at the level of trial center TTR (cTTR) since such analysis preserves randomized comparisons. Methods and Results: TTR was calculated using the Rosendaal method, without exclusion of international normalized ratio (INR) values performed during warfarin initiation. Measurements during warfarin interruptions >7 days were excluded. INRs were performed via standardized finger‐stick point‐of‐care devices at least every 4 weeks. The primary efficacy endpoint (stroke or non‐central nervous system embolism) was examined by quartiles of cTTR and by cTTR as a continuous function. Centers with the highest cTTRs by quartile had lower‐risk patients as reflected by lower CHADS2 scores (P<0.0001) and a lower prevalence of prior stroke or transient ischemic attack (P<0.0001). Sites with higher cTTR were predominantly from North America and Western Europe. The treatment effect of rivaroxaban versus warfarin on the primary endpoint was consistent across a wide range of cTTRs (P value for interaction=0.71). The hazard of major and non‐major clinically relevant bleeding increased with cTTR (P for interaction=0.001), however, the estimated reduction by rivaroxaban compared with warfarin in the hazard of intracranial hemorrhage was preserved across a wide range of threshold cTTR values. Conclusions: The treatment effect of rivaroxaban compared with warfarin for the prevention of stroke and systemic embolism is consistent regardless of cTTR
    corecore