3,293 research outputs found
13 Years of Timing of PSR B1259-63
This paper summarizes the results of 13 years of timing observations of a
unique binary pulsar, PSR B125963, which has a massive B2e star companion.
The data span encompasses four complete orbits and includes the periastron
passages in 1990, 1994, 1997 and 2000. Changes in dispersion measure occurring
around the 1994, 1997 and 2000 periastrons are measured and accounted for in
the timing analysis. There is good evidence for a small glitch in the pulsar
period in 1997 August, not long after the 1997 periastron, and a significant
frequency second derivative indicating timing noise. We find that spin-orbit
coupling with secular changes in periastron longitude and projected semi-major
axis () cannot account for the observed period variations over the whole
data set. While fitting the data fairly well, changes in pulsar period
parameters at each periastron seem ruled out both by X-ray observations and by
the large apparent changes in pulsar frequency derivative. Essentially all of
the systematic period variations are accounted for by a model consisting of the
1997 August glitch and step changes in at each periastron. These changes
must be due to changes in the orbit inclination, but we can find no plausible
mechanism to account for them. It is possible that timing noise may mask the
actual changes in orbital parameters at each periastron, but the good fit to
the data of the step-change model suggests that short-term timing noise is
not significant.Comment: 9 pages, 7 figures, accepted by MNRA
A Search for Pulsars in Quiescent Soft X-Ray Transients. I
We have carried out a deep search at 1.4 GHz for radio pulsed emission from
six soft X-ray transient sources observed during their X-ray quiescent phase.
The commonly accepted model for the formation of the millisecond radio pulsars
predicts the presence of a rapidly rotating, weakly magnetized neutron star in
the core of these systems. The sudden drop in accretion rate associated with
the end of an X-ray outburst causes the Alfv\`en surface to move outside the
light cylinder, allowing the pulsar emission process to operate. No pulsed
signal was detected from the sources in our sample. We discuss several
mechanisms that could hamper the detection and suggest that free-free
absorption from material ejected from the system by the pulsar radiation
pressure could explain our null result.Comment: accepted by Ap
Search for a Radio Pulsar in the Remnant of Supernova 1987A
We have observed the remnant of supernova SN~1987A (SNR~1987A), located in
the Large Magellanic Cloud (LMC), to search for periodic and/or transient radio
emission with the Parkes 64\,m-diameter radio telescope. We found no evidence
of a radio pulsar in our periodicity search and derived 8 upper bounds
on the flux density of any such source of Jy at 1.4~GHz and
Jy at 3~GHz. Four candidate transient events were detected with
greater than significance, with dispersion measures (DMs) in the
range 150 to 840\,cmpc. For two of them, we found a second pulse at
slightly lower significance. However, we cannot at present conclude that any of
these are associated with a pulsar in SNR~1987A. As a check on the system, we
also observed PSR~B054069, a young pulsar which also lies in the LMC. We
found eight giant pulses at the DM of this pulsar. We discuss the implications
of these results for models of the supernova remnant, neutron star formation
and pulsar evolution.Comment: 7 pages, 3 figures, 2 tables. Accepted for publication in MNRA
The Arecibo 430-MHz Intermediate Galactic Latitude Survey: Discovery of Nine Radio Pulsars
We have used the Arecibo Radio Telescope to search for millisecond pulsars in
two intermediate Galactic latitude regions (7 deg < | b | < 20 deg) accessible
to this telescope. For these latitudes the useful millisecond pulsar search
volume achieved by Arecibo's 430-MHz beam is predicted to be maximal. Searching
a total of 130 square degrees, we have discovered nine new pulsars and detected
four previously known objects. We compare the results of this survey with those
of other 430-MHz surveys carried out at Arecibo and of an intermediate latitude
survey made at Parkes that included part of our search area; the latter
independently found two of the nine pulsars we have discovered.
At least six of our discoveries are isolated pulsars with ages between 5 and
300 Myr; one of these, PSR J1819+1305, exhibits very marked and periodic
nulling. We have also found a recycled pulsar, PSR J2016+1948. With a
rotational period of 65 ms, this is a member of a binary system with a 635-day
orbital period. We discuss some of the the properties of this system in detail,
and indicate its potential to provide a test of the Strong Equivalence
Principle. This pulsar and PSR J0407+16, a similar system now being timed at
Arecibo, are by far the best systems known for such a test.Comment: Accepted for publication in ApJ Referee format: 22 pages, 7 figure
Representations of Time Coordinates in FITS
In a series of three previous papers, formulation and specifics of the
representation of World Coordinate Transformations in FITS data have been
presented. This fourth paper deals with encoding time. Time on all scales and
precisions known in astronomical datasets is to be described in an unambiguous,
complete, and self-consistent manner. Employing the well--established World
Coordinate System (WCS) framework, and maintaining compatibility with the FITS
conventions that are currently in use to specify time, the standard is extended
to describe rigorously the time coordinate. World coordinate functions are
defined for temporal axes sampled linearly and as specified by a lookup table.
The resulting standard is consistent with the existing FITS WCS standards and
specifies a metadata set that achieves the aims enunciated above.Comment: FITS WCS Paper IV: Time. 27 pages, 11 table
The 69 ms Radio Pulsar Near the Supernova Remnant RCW 103
We report the detection of the radio pulsar counterpart to the 69 ms X-ray
pulsar discovered near the supernova remnant RCW 103 (G332.4-0.4). Our
detection confirms that the pulsations arise from a rotation-powered neutron
star, which we name PSR J1617-5055. The observed barycentric period derivative
confirms that the pulsar has a characteristic age of only 8 kyr, the sixth
smallest of all known pulsars. The unusual apparent youth of the pulsar and its
proximity to a young remnant requires that an association be considered.
Although the respective ages and distances are consistent within substantial
uncertainties, the large inferred pulsar transverse velocity is difficult to
explain given the observed pulsar velocity distribution, the absence of
evidence for a pulsar wind nebula, and the symmetry of the remnant. Rather, we
argue that the objects are likely superposed on the sky; this is reasonable
given the complex area. Without an association, the question of where is the
supernova remnant left behind following the birth of PSR J1617-5055 remains
open. We also discuss a possible association between PSR J1617-5055 and the
gamma-ray source 2CG 333+01. Though an association is energetically plausible,
it is unlikely given that EGRET did not detect 2CG 333+01.Comment: 18 pages, 2 encapsulated Postscript figures, uses AAS LaTeX style
files. Accepted for publication in The Astrophysical Journal Letter
- …
