795 research outputs found
High Energy Variability Of Synchrotron-Self Compton Emitting Sources: Why One Zone Models Do Not Work And How We Can Fix It
With the anticipated launch of GLAST, the existing X-ray telescopes, and the
enhanced capabilities of the new generation of TeV telescopes, developing tools
for modeling the variability of high energy sources such as blazars is becoming
a high priority. We point out the serious, innate problems one zone
synchrotron-self Compton models have in simulating high energy variability. We
then present the first steps toward a multi zone model where non-local, time
delayed Synchrotron-self Compton electron energy losses are taken into account.
By introducing only one additional parameter, the length of the system, our
code can simulate variability properly at Compton dominated stages, a situation
typical of flaring systems. As a first application, we were able to reproduce
variability similar to that observed in the case of the puzzling `orphan' TeV
flares that are not accompanied by a corresponding X-ray flare.Comment: to appear in the 1st GLAST symposium proceeding
Witnessing the gradual slow-down of powerful extragalactic jets: The X-ray -- optical -- radio connection
A puzzling feature of the {\it Chandra}--detected quasar jets is that their
X-ray emission decreases faster along the jet than their radio emission,
resulting to an outward increasing radio to X-ray ratio. In some sources this
behavior is so extreme that the radio emission peak is located clearly
downstream of that of the X-rays. This is a rather unanticipated behavior given
that the inverse
Compton nature of the X-rays and the synchrotron radio emission are
attributed to roughly the same electrons of the jet's non-thermal electron
distribution. In this note we show that this morphological behavior can result
from the gradual deceleration of a relativistic flow and that the offsets in
peak emission at different wavelengths carry the imprint of this deceleration.
This notion is consistent with another recent finding, namely that the jets
feeding the terminal hot spots of powerful radio galaxies and quasars are still
relativistic with Lorentz factors . The picture of the
kinematics of powerful jets emerging from these considerations is that they
remain relativistic as they gradually decelerate from Kpc scales to the hot
spots, where, in a final collision with the intergalactic medium, they
slow-down rapidly to the subrelativistic velocities of the hot spot advance
speed.Comment: Submitted in ApJ Letters on Jan. 14, 200
A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems
Black holes generate collimated, relativistic jets which have been observed
in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies
(active galactic nuclei; AGN). How jet physics scales from stellar black holes
in GRBs to the supermassive ones in AGNs is still unknown. Here we show that
jets produced by AGNs and GRBs exhibit the same correlation between the kinetic
power carried by accelerated particles and the gamma-ray luminosity, with AGNs
and GRBs lying at the low and high-luminosity ends, respectively, of the
correlation. This result implies that the efficiency of energy dissipation in
jets produced in black hole systems is similar over 10 orders of magnitude in
jet power, establishing a physical analogy between AGN and GRBs.Comment: Published in Science, 338, 1445 (2012), DOI: 10.1126/science.1227416.
This is the author's version of the work. It is posted here by permission of
the AAAS for personal use, not for redistribution. Corrected typo in equation
4 of the supplementary materia
The Spectacular Radio-Near-IR-X-ray Jet of 3C 111: X-ray Emission Mechanism and Jet Kinematics
Relativistic jets are the most energetic manifestation of the active galactic
nucleus (AGN) phenomenon. AGN jets are observed from the radio through
gamma-rays and carry copious amounts of matter and energy from the sub-parsec
central regions out to the kiloparsec and often megaparsec scale galaxy and
cluster environs. While most spatially resolved jets are seen in the radio, an
increasing number have been discovered to emit in the optical/near-IR and/or
X-ray bands. Here we discuss a spectacular example of this class, the 3C 111
jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We
discuss new, deep Chandra and HST observations that reveal both near-IR and
X-ray emission from several components of the 3C 111 jet, as well as both the
northern and southern hotspots. Important differences are seen between the
morphologies in the radio, X-ray and near-IR bands. The long (over 100 kpc on
each side), straight nature of this jet makes it an excellent prototype for
future, deep observations, as it is one of the longest such features seen in
the radio, near-IR/optical and X-ray bands. Several independent lines of
evidence, including the X-ray and broadband spectral shape as well as the
implied velocity of the approaching hotspot, lead us to strongly disfavor the
EC/CMB model and instead favor a two-component synchrotron model to explain the
observed X-ray emission for several jet components. Future observations with
NuSTAR, HST, and Chandra will allow us to further constrain the emission
mechanisms.Comment: 12 pages, 9 figures, ApJ, in pres
Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial
Light propagation through 1D disordered structures composed of alternating
layers, with random thicknesses, of air and a dispersive metamaterial is
theoretically investigated. Both normal and oblique incidences are considered.
By means of numerical simulations and an analytical theory, we have established
that Anderson localization of light may be suppressed: (i) in the long
wavelength limit, for a finite angle of incidence which depends on the
parameters of the dispersive metamaterial; (ii) for isolated frequencies and
for specific angles of incidence, corresponding to Brewster anomalies in both
positive- and negative-refraction regimes of the dispersive metamaterial. These
results suggest that Anderson localization of light could be explored to
control and tune light propagation in disordered metamaterials.Comment: 4 two-column pages, 3 figure
Anisotropy and oblique total transmission at a planar negative-index interface
We show that a class of negative index (n) materials has interesting
anisotropic optical properties, manifest in the effective refraction index that
can be positive, negative, or purely imaginary under different incidence
conditions. With dispersion taken into account, reflection at a planar
negative-index interface exhibits frequency selective total oblique
transmission that is distinct from the Brewster effect.
Finite-difference-time-domain simulation of realistic negative-n structures
confirms the analytic results based on effective indices.Comment: to appear in Phys. Rev.
A multi-zone model for simulating the high energy variability of TeV blazars
We present a time-dependent multi-zone code for simulating the variability of
Synchrotron-Self Compton (SSC) sources. The code adopts a multi-zone pipe
geometry for the emission region, appropriate for simulating emission from a
standing or propagating shock in a collimated jet. Variations in the injection
of relativistic electrons in the inlet propagate along the length of the pipe
cooling radiatively. Our code for the first time takes into account the
non-local, time-retarded nature of synchrotron self-Compton (SSC) losses that
are thought to be dominant in TeV blazars. The observed synchrotron and SSC
emission is followed self-consistently taking into account light travel time
delays. At any given time, the emitting portion of the pipe depends on the
frequency and the nature of the variation followed. Our simulation employs only
one additional physical parameter relative to one-zone models, that of the pipe
length and is computationally very efficient, using simplified expressions for
the SSC processes. The code will be useful for observers modeling GLAST, TeV,
and X-ray observations of SSC blazars.Comment: ApJ, accepte
Protein detection by polymer optical fibers sensitized with overlayers of block or random copolymers
In this study a low cost and low complexity optical detection method of proteins is presented by employing a detection scheme based on electrostatic interactions, and implemented by sensitization of a polymer optical fiber (POF) surface by thin overlayer of properly designed sensitive copolymer materials with predesigned charges. This method enables the fast detection of proteins having opposite charge to the overlayer, and also the effective discrimination of differently charged proteins like lysozyme (LYS) and bovine serum albumin (BSA). More specifically, as sensitive materials here was used the block and the random copolymers of the same monomers, namely the block copolymer poly(styrene-b-2vinylpyridine) (PS-b-P2VP) and the corresponding random polymer poly(styrene-r-2-vinylpyridine) (PS-r-P2VP), of similar composition and roughly similar molecular weight. Moreover, this work focused on the comparison of the aforementioned sensitive materials regarding the way in which they can adapt on sensing optical platforms and constitute functional sensing bio-materials
- …
