355 research outputs found

    The relationship between successional vascular plant assemblages and associated microbial communities on coal mine spoil heaps

    Get PDF
    The aim of the study was to investigate the relationships between the vascular plant species and the associated soil microbial properties at various stages of vegetation development on unclaimed hard coal mine spoil heaps in Upper Silesia (south Poland). The spontaneous vegetation, soil chemistry as well as the activity and structure of microbial communities were recorded on this specific habitat. The colliery heaps were divided into four age classes and the plant species composition and cover abundance were recorded on established plots (2 m × 2 m). The soil microbial activity under the vegetation patches was assessed using fluorescein diacetate hydrolytic activity (FDHA) and the soil microbial biomass and community composition were determined by phospholipid fatty acid (PLFA) biomarkers. Total microbial biomass in soils from the older vegetation plots was significantly higher than those in soils from the younger plots. In all studied samples, microbial communities consisted primarily of bacteria with the dominance of Gram negative bacteria over Gram positive and aerobic microorganisms were more dominant than anaerobic ones. Statistical analysis revealed a correlation between the type of vegetation and microbial community structure

    SAWA experiment ? properties of mineral dust aerosol as seen by synergic lidar and sun-photometer measurements

    No full text
    International audienceWe propose a method of retrieving basic information on mineral dust aerosol particles from synergic sun-photometer and multi-wavelength lidar measurements as well as from the observations of lidar light depolarisation. We use this method in a case study of mineral dust episode in Central Europe. Lidar signals are inversed with a modified Klett-Fernald algorithm. Aerosol optical depth measured with the sun-photometer allows to reduce uncertainties in the inversion procedure through which we estimate vertical profile of aerosol extinction. Next we assume that aerosol particles may be represented by ensemble of randomly oriented, identical spheroids. Having calculated vertical profiles of aerosol extinction coefficients for lidar wavelengths, we compute the profiles of local Angstrom exponent. We use laser beam depolarisation together with the calculated Angstrom exponents to estimate the shapes (aspect ratios) and sizes of the spheroids. Numerical calculations are performed with the transition matrix (T-matrix) algorithm by M. Mishchenko. The proposed method was first used during SAWA measurement campaign in Warsaw, spring 2005, to characterise the particles of desert dust, drifting over Poland with a southern-eastern wind (13?14 April). Observations and T-matrix calculations show that mode radii of spheroids representative for desert aerosols' particles are in the range of 0.15?0.3 ?m, while their aspect ratios are lower than 0.7 or larger than 1.7

    ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution

    Get PDF
    Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass-burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change

    On the determination of a cloud condensation nuclei from satellite : Challenges and possibilities

    Get PDF
    We use aerosol size distributions measured in the size range from 0.01 to 10+ μm during Transport and Chemical Evolution over the Pacific (TRACE-P) and Aerosol Characterization Experiment-Asia (ACE-Asia), results of chemical analysis, measured/modeled humidity growth, and stratification by air mass types to explore correlations between aerosol optical parameters and aerosol number concentration. Size distributions allow us to integrate aerosol number over any size range expected to be effective cloud condensation nuclei (CCN) and to provide definition of a proxy for CCN (CCNproxy). Because of the internally mixed nature of most accumulation mode aerosol and the relationship between their measured volatility and solubility, this CCNproxy can be linked to the optical properties of these size distributions at ambient conditions. This allows examination of the relationship between CCNproxy and the aerosol spectral radiances detected by satellites. Relative increases in coarse aerosol (e.g., dust) generally add only a few particles to effective CCN but significantly increase the scattering detected by satellite and drive the Angstrom exponent (α) toward zero. This has prompted the use of a so-called aerosol index (AI) on the basis of the product of the aerosol optical depth and the nondimensional α, both of which can be inferred from satellite observations. This approach biases the AI to be closer to scattering values generated by particles in the accumulation mode that dominate particle number and is therefore dominated by sizes commonly effective as CCN. Our measurements demonstrate that AI does not generally relate well to a measured proxy for CCN unless the data are suitably stratified. Multiple layers, complex humidity profiles, dust with very low α mixed with pollution, and size distribution differences in pollution and biomass emissions appear to contribute most to method limitations. However, we demonstrate that these characteristic differences result in predictable influences on AI. These results suggest that inference of CCN from satellites will be challenging, but new satellite and model capabilities could possibly be integrated to improve this retrieval

    Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign

    Get PDF
    Submicron atmospheric aerosol samples were collected during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign on four platforms: Chebogue Point (Nova Scotia, Canada), Appledore Island (Maine), the CIRPAS Twin Otter over Ohio, and the NOAA R/V Ronald H. Brown in the Gulf of Maine. Saturated aliphatic C-C-H, unsaturated aliphatic C=C−H, aromatic C=C−H, organosulfur C-O-S, carbonyl C=O, and organic hydroxyl C-OH functional groups were measured by calibrated Fourier Transform Infrared (FTIR) spectroscopy at all four sampling platforms. The ratio of molar concentrations of carbonyl C=O to saturated aliphatic C-C-H groups was nearly constant at each sampling platform, with the Twin Otter samples having the lowest ratio at 0.1 and the three more coastal platforms having ratios of 0.4 and 0.5. Organic mass (OM) to organic carbon (OC) ratios follow similar trends for the four platforms, with the Twin Otter having the lowest ratio of 1.4 and the coastal platforms having slightly higher values typically between 1.5 and 1.6. Organosulfur compounds were occasionally observed. Collocated organic aerosol sampling with two Aerodyne aerosol mass spectrometers for OM, a Sunset Laboratory thermo-optical analysis instrument for OC, and an ion chromatography-particle into liquid sampler (IC-PILS) for speciated carboxylic acids provided comparable results for most of the project, tracking the time series of FTIR OM, OC, and carbonyl groups, respectively, and showing simultaneous peaks of similar magnitude during most of the project. The FTIR/IC-PILS comparison suggests that about 9% of the carbonyl groups found in submicron organic particles on the Twin Otter are typically associated with low molecular weight carboxylic acids

    An overview of the first decade of PollyNET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    Get PDF
    © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 LicenseA global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.Peer reviewe

    Conventional Dendritic Cells Mount a Type I IFN Response against Candida spp. Requiring Novel Phagosomal TLR7-Mediated IFN-β Signaling

    No full text
    Abstract Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we demonstrate a novel mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFN-α/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression. Interestingly, the initial IFN-β release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing adapter-inducing IFN-β and the β-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-β release is strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-β signaling. Furthermore, in a mouse model of disseminated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating the host immune response to C. glabrata.</jats:p

    Individual Particle Characteristics, Optical Properties and Evolution of an Extreme Long‐Range Transported Biomass Burning Event in the European Arctic (Ny‐Ålesund, Svalbard Islands)

    Get PDF
    This paper reports an exceptional biomass burning (BB) advection event from Alaska registered at Ny‐Ålesund from 10 to 17 July 2015 with particular interest on the influence of the airborne particle characteristics on the optical properties of the aerosol during the event. To this purpose we considered two DEKATI 12‐stage aerosol samples spanning the entire advection and analyzed them by scanning electron microscopy techniques. Aerosol chemical data and microphysical properties were also evaluated in order to correlate any change of individual particle characteristics with the bulk properties of the aerosol. The results of individual particle analysis depict a complex event characterized by a first phase (P1) of massive input of BB carbonaceous particles (i.e., tar balls, popcorn refractory particles, and organic particles), and by a second phase (P2) dominated by inorganic salts. The peculiar feature of this BB event is the exceptionally large grain size of the subspherical organic particles at the beginning of the event with respect to the background. At these conditions a significant increase of the scattering efficiency may occur even for a small increase of the size parameter. Results of the simulation of the complex refractive indices (n‐ik) confirm this evaluation. Aerosol evolution during the event resulted from the combination of three distinct occurrences: (a) progressive rotation of air mass circulation toward non‐BB source areas, (b) development of a thick fog layer in the planetary boundary layer, and (c) sea salt spray direct advection of local/regional provenance
    corecore